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Abstract. This paper studies the reinforcement learning (RL) method
for central pattern generators (CPG) that generates stable rhythmic
movements such as biped locomotion. RL for biped locomotion is very
diÆcult, since the biped robot is highly unstable and the system has
continuous state and action spaces with a high degree of freedom. In
order to deal with RL for CPG, we propose a new RL method called
the CPG-actor-critic method. We applied this method to the RL for the
biped robot. The computer simulation showed that our RL method was
able to train the CPG such that the biped robot walk stably.

1 Introduction

Biological systems exhibit various
kinds of rhythmic movement such as
locomotion and swimming. The con-
trol mechanism of these movements has
been extensively studied both in bi-
ological science and engineering. Re-
cent studies of biped locomotion en-
abled biped humanoid robots to walk
in real environments [1]. Despite these
advancements, further studies are still
needed because human locomotion is
much more exible and robust than
that of current robots. Neurobiologi-
cal studies revealed that rhythmic mo-
tor patterns are controlled by neural
oscillators referred to as central pat-
tern generators (CPG) [2]. It has been
also suggested that sensory feedback
plays an important role in stabilizing
rhythmic movements by coordinating
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the physical system and the CPG. In-
spired by these �ndings, human-like
biped walking was successfully simu-
lated in [3] by using the CPG con-
troller, whose weights were carefully
tuned by hand. However, it is very diÆ-
cult to determine the parameter values
for various robots and environments,
since there is no design principle to de-
termine the CPG parameter values.

The main aim of this paper is to
study the reinforcement learning (RL)
method for a CPG controller that gen-
erates stable rhythmic movements. RL
methods have been successfully applied
to various Markov decision problems
(MDP) with �nite state and action
spaces [4]. RL for biped locomotion is
very diÆcult, because the biped robot
is highly unstable and the system has
continuous state and action spaces with
a high degree of freedom. Standard RL
methods [4] such as temporal-di�erence
(TD) learning, Q-learning and actor-
critic methods are not suited for train-



ing the CPG, which is a special case of
recurrent neural networks. In order to
deal with RL for CPG, we propose a
new RL method called the CPG-actor-
critic method. We applied this method
to the biped robot used in [3]. The com-
puter simulation showed that our RL
method was able to train the CPG so
that the biped robot walk stably.

2 CPG

In this paper, we study reinforcement
learning (RL) for robot rhythmic move-
ment using a central pattern genera-
tor (CPG), depicted in Fig. 1(a). The
equation of motion for a physical sys-
tem such as for a robot is formally writ-
ten as

_x = F (x; �); (1)

where x and _x denotes the physical
state and its time derivative, respec-
tively. The control signal (torque) from
the CPG is denoted by � . F (x; �) rep-
resents the vector �eld of the system
dynamics. The equation of motion for
a CPG, which is a special case of recur-
rent neural networks, is given by

ci _�i = ��i + Ii; yi = Gi(�i); (2)

Ii =
X

j

Wijyj + Ibiasi + Iexti ;

Iexti =
X

k

AikSk;

where �i, yi and ci represent the i-th
neuron state variable, its output and
its time constant, respectively. Ii, I

bias
i

and Iexti represent the total input, the
bias input and the external input to the
i-th neuron, respectively. The external
input Iexti is a weighted sum of the sen-
sory feedback signal Sk with the con-
nection weight Aik. The output func-
tion Gi(�) is assumed to be a sigmoidal
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Fig. 1. Actor-critic method.

function or some threshold function.
The connection weight from the j-th
neuron to the i-th neuron is denoted
by Wij . The control signal to the phys-
ical system is given by a weighted sum
of the CPG neuron output:

�� =
X

i

T�iyi; (3)

where �� represents the �-th control
signal and T�i represents the weight
factor.

3 CPG-actor-critic

When we try to apply the actor-critic
method to the CPG controller sys-
tem, there are several diÆculties. In
this method, (Fig. 1(b)), the CPG con-
troller becomes the actor. Since the
CPG output depends on its current in-
ternal state, the future reward also de-
pends on the internal state of the CPG.
Therefore, the reinforcement learning
task in this method becomes a par-
tially observable Markov decision prob-
lem (POMDP), which is much more
diÆcult than a MDP, even if the physi-
cal system state is fully observable. An-
other source of diÆculty comes from
the fact that the CPG is a recurrent



neural network. The standard actor-
critic algorithm is not suited for train-
ing recurrent neural networks.
In order to overcome these diÆcul-

ties, we propose a new RL method that
is called the CPG-actor-critic method
(Fig. 2(b)). In this method, the CPG
is divided into two modules, i.e., the
basic CPG and the actor. Correspond-
ingly, input to the CPG neuron, Ii, is
divided into two parts:

Ii = I
fix
i + ui; (4)

I
fix
i =
X

j

W
fix
ij yj + Ibiasi ;

ui =
X

j

W act
ij yj +

X

k

AikSk: (5)

The basic CPG is de�ned by the �xed
connection weight W fix

ij and receives
the input, u, from the actor. The actor
in this method is a linear controller and
receives the basic CPG neuron output
y and the physical system feedback sig-
nal S. The actor calculates its output
to the basic CPG, u, by (5). This CPG-
actor-critic method has dual aspects.
From the control viewpoint, the CPG
controller consists of the basic CPG
and the actor (i.e.,Wij =W

fix
ij +W act

ij )
as shown in Fig. 2(a). From the RL
viewpoint, the actor sends the virtual
control signal, u, to the virtual system,
which consists of the basic CPG and
the physical system as shown in Fig.
2(b). Since the actor in this method is
a linear controller, training of the ac-
tor can be done by using the gradient
ascent method described below.
The critic receives the virtual system

state, namely, it receives both the phys-
ical state and the basic CPG state, and
predicts the future reward for the cur-
rent state. When the physical system
state is fully observable, the RL prob-
lem in this CPG-actor-critic method

becomes a MDP. Consequently, we can
avoid the diÆculties mentioned earlier.
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Fig. 2. CPG-actor-critic method.

4 Learning Algorithm

The RL algorithm for the CPG-actor-
critic method is explained in this sec-
tion. For explanatory simplicity, we as-
sume the discrete time notation, that
is, it is assumed that the di�erential
equations, (1) and (2), are discretized
by an appropriate method.
The current virtual system state at

time t is represented by the physical
state x(t) and the basic CPG state
�(t). The actor receives the basic CPG
neuron output y(t) = G(�(t)) and the
sensory feedback signal S(t), which is
some function of x(t), from the phys-
ical system. The actor calculates the
output u(t) by (5). After receiving the
actor output, the virtual system con-
sisting of the basic CPG and the phys-
ical system changes its state to (�(t +
1);x(t+1)) according to the basic CPG
and the physical system equations (1)-
(4). Then, the critic receives an imme-
diate reward r(�(t);x(t);u(t)).



The goal of the RL is to �nd the opti-
mal actor that maximizes the expected
future return de�ned by

V (�;x) �
1X

t=0

tr(�(t);x(t);u(t));

(6)

where �(0) = � and x(0) = x are
assumed. (0 <  � 1) is a dis-
counted factor. The action-value func-
tion Q(�;x;u), which is called the Q-
function, is de�ned by

Q(�;x;u) = r(�;x;u)

+ V (�(t+ 1);x(t+ 1)); (7)

where �(t) = �, x(t) = x and
u(t) = u are assumed. The Q-function,
Q(�;x;u), indicates the expected fu-
ture return for the current state and
action (�;x;u), when the current actor
is used for the subsequent states. From
(6) and (7), the Q-function should sat-
isfy the following consistency condi-
tion:

Q(�(t);x(t);u(t)) = r(�(t);x(t);u(t))

+ Q(�(t+ 1);x(t+ 1);u(t+ 1)):
(8)

The critic in the CPG-actor-critic
method approximates the Q-function
based on (8) as in the Sarsa algorithm
[4]. As a function approximator for the
critic, we employ the normalized Gaus-
sian neural network (NGnet). The ef-
�cient on-line EM algorithm for the
NGnet has been derived in [5]. The unit
deletion and creation mechanism have
also been incorporated in this on-line
EM algorithm. This algorithm is suited
for learning dynamic environment [6]
such as the CPG-actor-critic method
where the target Q-function for the
critic depends on the current actor that

is also modi�ed according to the critic
prediction.
The learning process for the CPG-

actor-critic method is as follows. In
the �rst phase, the state of the ba-
sic CPG and the physical system,
(�(t);x(t)), is updated according to
(1)-(5) by using the �xed actor for a
given period of time. In this period,
the critic receives the immediate re-
ward r(�(t);x(t);u(t)) and is trained
in on-line fashion such that the con-
sistency condition (8) is satis�ed. The
input to the critic is the system state
and the action (�(t);x(t);u(t)). The
teacher output for the critic is given
by the right hand side of (8). Then,
the model parameters of the NGnet
are adjusted by using the on-line EM
algorithm. The system state and the
action trajectory f(�(t);x(t);u(t))jt =
0; 1; : : : ; tmaxg are saved.
In the second phase, the actor is

trained using the saved trajectory. In
order to increase the Q-function value
(i.e., the expected future return), the
weight parameters of the actor are up-
dated by the gradient ascent method

� /
@Q(�;x;u)

@u

@u

@ 
; (9)

where  represents the weight param-
eters of the actor, W act

ij or Aik. The
above procedure de�nes one episode.
The reinforcement learning proceeds
by repeating these episodes.

5 Biped Robot

In the following, we apply the CPG-
actor-critic method to the biped robot
studied in [3]. The robot consists of �ve
links in the sagittal plane as shown in
Fig. 3(a). Each leg consists of two links
and link-1 represents the remainder of



link-1

link-2link-3

link-4link-5

τ1

τ3

τ2

τ4
τ5τ6

(a)

12

2
13

4

5 678

9 1011

τ1τ2

τ3

τ6τ 5

τ4

(b)

Fig. 3. (a)Biped robot. (b)CPG.

the body, which is given as a point
mass. The robot state is represented by
x = (x1; _x1; h1; _h1; �2; _�2; : : : ; �5; _�5),
where x1 and h1 represent the hori-
zontal and vertical coordinates of link-
1, respectively. �i(i = 2; : : : ; 5) repre-
sents the angle of link-i from the verti-
cal axis.

The structure of the CPG that con-
trols the biped robot is also adopted
from [3] and shown in Fig. 3(b). There
are six oscillators interacting with each
other. An oscillator consists of two mu-
tually inhibiting parent neurons, �2i�1
and �2i (i = 1; : : : ; 6), whose output
functions are the threshold function de-
�ned by yi = Gi(�i) = max(0; �i); (i =
1; : : : ; 12). Each parent neuron, �i(i =
1; : : : ; 12), has a daughter neuron �i+12

whose output function is the identity
function. The daughter neuron is solely
connected to its parent neuron with
excite-inhibit mutual connections.

The torque �i(i = 1; : : : ; 6), which is
applied to the i-th joint (Fig. 3), is cal-
culated from the CPG neuron output:
�i = �T I

i y2i�1+T
E
i y2i for i = 1; : : : ; 4,

and �i = (�T I
i y2i�1 + TE

i y2i)�i�1 for
i = 5; 6. �i is an indicator function of
the link-i (i = 4; 5), i.e., �i = 1 (0)
when the foot link-i touches (is o�) the
ground. The values of T I

i and TE
i are

given in [3]. In the following experi-
ment, all connection weights between
CPG neurons are �xed to the value

given in [3], namely, W act
ij � 0 is as-

sumed in (5). We also assume a spe-
ci�c form of the sensory feedback to the
CPG as in [3]:

Iext1 = a1S1 � a2S2 + a3S3 + a4S6;

Iext3 = a1S2 � a2S1 + a3S4 + a4S5;

Iext5 = a5S4;

Iext7 = a5S3;

Iext9 = �a6S3 � a7S4 � a8S7;

Iext11 = �a6S4 � a7S3 � a8S8;

Iext2i = �Iext2i�1 for i = 1; : : : ; 6;
(10)

where S = f�2; �3; �4�4; �5�5; �4; �5;
_�4�4; _�5�5g.

6 Experiment

The main task of the reinforcement
learning for the biped robot is to ad-
just the sensory feedback connections
faiji = 1; : : : ; 8g in (10) such that the
robot is able to walk stably. In order to
encourage the robot to walk, an imme-
diate reward r(�(t);x(t);u(t)) is given
by ~r(x(t+ 1)),

~r(x) = 0:5rheight(x) + 0:02rspeed(x):

The reward rheight(x) = h1 � 0:8 �
min(h4; h5), encourages the hip po-
sition to stay high, where hi (i =
4; 5) denotes the foot height of
the link-i. The reward rspeed(x) =
max(�1;min( _x1; 1)) encourages the
robot to move toward the right direc-
tion. The maximum period length of
one episode was 5 sec. If the robot
tumbled before 5 sec, the episode was
terminated at that point. The initial
value of the sensory feedback connec-
tions were set to small random values.

The learning curves for the total
return, the total walking length and
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Fig. 4. Learning process.

the period length in one episode are
shown in Fig. 4. At the beginning of
the learning, the robot soon fell down
(Fig. 5(a)). After about 4000 episodes,
the robot started to run in place (Fig.
5(b)). After about 5800 episodes, the
robot started to walk (Fig. 5(c)). The
�nal sensory feedback weight values af-
ter learning were a = f1:00; �0:31;
1:00; 0:65; 0:11; 0:25; 1:00; 0:49g which
are quite di�erent from the hand-tuned
values used in [3], a = f0:15; 0:10; 0:15;
0:15; 0:30; 0:15; 0:30; 0:15g.

0 1 2 3 4
−0.5

0

0.5

1

1.5

(a)

0 1 2 3 4
−0.5

0

0.5

1

1.5

(b)

0 2 4 6 8 10
−0.5

0

0.5

1

1.5

(c)

Fig. 5. Robot gait pattern. (a)Before
learning. (b)After 5500 episodes. (c)After
7000 episodes.

7 Discussion

In this paper, we proposed a new
RL method called the CPG-actor-critic
method and applied it to biped loco-
motion. Although the result was suc-
cessful, the learning process was rather
unstable. It is necessary to increase
the stability of our RL method in the
future. In the current simulation, the
CPG internal weights were �xed and
only sensory feedback connections were
adjusted by RL. It remains for fu-
ture study to adjust the CPG inter-
nal weights by the CPG-actor-critic
method.

References

1. Hirai, K., et al. 1998. The develop-
ment of Honda humanoid robot. Pro-
ceedings of ICRA 2:1321-1326

2. Grillner, S., Wallen, P. and Brodin, L.
1991. Neuronal network generating lo-
comotor behavior in lamprey. Annu.
Rev. Neurosci. 14:169-199

3. Taga, G., Yamaguchi, Y., and
Shimizu, H. 1991. Self-organized
control of bipedal locomotion by
neural oscillators in unpredictable en-
vironment. Biol. Cybern. 65:147-159

4. Sutton, R. S. and Barto, A. G. 1998.
Reinforcement learning. MIT Press

5. Sato, M. and Ishii, S. 2000. On-
line EM algorithm for the normalized
Gaussian network. Neural Computa-

tion 12:407-432
6. Sato, M. and Ishii, S. 1999. Reinforce-

ment learning based on on-line EM al-
gorithm. NIPS 11, 1052-1058

7. Morimoto J. and Doya K. 2001. Ac-
quisition of stand-up behavior by a
real robot using hierarchical reinforce-
ment learning. Robot. Auton. Syst.,
36:37-51.


