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Abstract. The Relevance Vector Machine (RVM) gives a probabilistic
model for a sparse kernel representation. It achieves comparable perfor-
mance to the Support Vector Machine (SVM) while using substantially
fewer kernel bases. However, the computational complexity of the RVM
in the training phase prohibits its application to large datasets. In order
to overcome this diÆculty, we propose an incremental Bayesian method
for the RVM. The preliminary experiments showed the eÆciency of our
method for large datasets.

1 Introduction

The SVM [3] has been recognized as a state-of-the-art method for machine learn-
ing. It makes predictions based on a linear combination of kernel functions de-
�ned on a subset of the training data points called the support vectors. This
sparse kernel representation avoids over�tting to the training data and increases
the generalization ability. However, the main disadvantage of the SVM is its
lack of probabilistic model. Therefore, it cannot estimate the uncertainty of a
prediction, which gives important information in application to real-world prob-
lems. Recently, a probabilistic model for a kernel representation called the Rel-
evance Vector Machine (RVM) [1] was proposed. The Bayes estimation of the
RVM with an Automatic Relevance Determination (ARD) prior [1, 2] leads to
a sparse kernel representation. The RVM achieves comparable performance to
the SVM while using substantially fewer kernel bases [1]. However, the principal
disadvantage of the RVM is its computational complexity in the training phase.
It requires O((# of data)3) computation time. This prohibits the application of
the RVM to large datasets.

In order to overcome this diÆculty, we propose an incremental Bayesian
method for the RVM. The proposed method can learn a large amount of data in-
crementally and gives a sparse kernel representation. It requiresO((# of bases)2�
(# of data)) computation time, which is much smaller than the computation
time required by the RVM for a large amount of data.

The Gaussian Process (GP) [4] also provides a probabilistic model for kernel
representation. An online learning method for the GP was proposed [5] recently.
However, the GP has no inherent mechanism for basis selection. In order to get
a sparse kernel representation, it is necessary to introduce heuristic mechanisms
[5]. The advantage of our method is that the sparse kernel representation is an



inherent property of the Bayes estimation with the ARD prior. The preliminary
experiments showed the eÆciency of our approach for large datasets.

2 Relevance Vector Machine

In supervised learning, a set of input-output pairs (X;Y ) � fx(n);y(n)jn =
1; : : : ; Ng is given to a learner, where x and y represent an L-dim. input vector
and a D-dim. output vector, respectively. The task of the learner is to predict
the output y for a new input data x based on the training data (X;Y ) and
some prior knowledge of the problem. The RVM [1] is de�ned as a probabilistic
model for the kernel representation:

P (yjx;X ;W ; �) = N (yjf (x;X ;W ); ��1); (1)

f (x;X ;W ) =
NX
n=0

wn�n(x) =
NX
n=0

wnK(x;x(n)); (2)

where wn denotes a D-dim. weight vector, �n(x) � K(x;x(n))(n = 1; : : : ; N)
is a kernel basis function de�ned on an input point x(n), and �0(x) � 1.
N (yj�; ��1) denotes a normal distribution over y with mean � and variance
��1. Accordingly, the conditional likelihood for the training data can be written
as P (Y jX ;W ; �) =

QN

n=1N (y(n)jf(x(n);X;W ); ��1). Applying the Bayesian
method together with the ARD prior [1, 2], one can get a sparse kernel rep-

resentation: y = f (x;XB ;W ) =
PJ

j=0wj�j(x); where XB � fxB(j)jj =
1; : : : ; Jg � X represents a reduced set of input data that de�nes the sparse
kernel basis �j(x) � K(x;xB(j)) and is called the relevance vector [1].

3 Incremental Sparse Kernel Machine

3.1 Incremental Bayesian method

In the original RVM [1, 2], the posterior parameter distribution is calculated
for the entire dataset (X ;Y ). The incremental Bayesian method proposed here
uses only a part of the dataset in one learning epoch. At the beginning of the
learning, a dataset (XD;Y D) � fxD(m);yD(m)jm = 1; : : : ;Mg is selected from
the dataset (X ;Y ). The current basis set XB � fxB(j)jj = 1; : : : ; Jg is also
selected from the input dataset X . The conditional likelihood for the current
dataset (XD;Y D) under the current basis set XB is given by

P (Y DjXD;XB ;W ; �) =
MY
m=1

N (yD(m)jf(xD(m);XB ;W ); ��1); (3)

where f (x;XB ;W ) is de�ned in (2). We employ the hierarchical ARD prior [2]
for the model parametersW � fwj jj = 0; : : : ; Jg:

P0(W j�;�) =
JY
j=0

N (wj jwj0; (��j)
�1); P0(�) =

JY
j=0

� (�j jaj0; ��
�1

j0 ); (4)



where the hyperparameters� � f�j jj = 0; : : : ; Jg are introduced for controlling
the variance of each weight vector wj . The mean weight vector wj0 of the ARD
prior (4) is assumed to be zero, i.e., wj0 � 0. This introduces a bias onwj toward
a null vector. However, we have no idea about the proper value of the hyper-
parameter �. Therefore, the hyperparameter � is integrated by introducing the
hierarchical prior for �. The hyperprior for � is assumed to be a product of the
Gamma distribution de�ned by � (�ja; b) � ��1(ab�)a exp(�ab�)=� (a); which
is the conjugate prior for the inverse-variance parameter. � (a) is the Gamma
function de�ned by � (a) �

R
1

0
dtta�1e�at. We also introduce a hierarchical prior

for the inverse of the output variance parameter �:

P0(�j�) =� (�j
�0; �); P0(�) =� (� j
�0; �
�1

0
): (5)

3.2 Incremental Sparse Kernel Machine

The posterior distribution over the model parameters � = (W ; �) and the hy-
perparameters � = (�; �) is given by

P (�; �jY D;XD ;XB) =
P (Y D;�; �jXD;XB)

P (Y DjXD;XB)
; (6)

P (Y D;�; �jXD ;XB) =P (Y DjXD ;XB ;W ; �)P0(W j�;�)P0(�j�)P0(�)P0(�);

P (Y DjXD ;XB) =

Z
d�d�P (Y D;�; �jXD;XB): (7)

Since the integration in the marginal likelihood (evidence) P (Y DjXD;XB) is
analytically intractable, we use the variational Bayes (VB) method developed in
[6, 7, 2]. In order to approximate the posterior (6), the VB method introduces a
trial (variational) posterior Q(�; �) and de�nes the free energy for Q:

F [Q] =

Z
d�d�Q(�; �) log(P (Y D;�; �jXD ;XB)=Q(�; �))

= logP (Y DjXD;XB)�

Z
d�d�Q(�; �) log

Q(�; �)

P (�; �jY D;XD;XB)
(8)

The second term in (8) is the Kullback-Leibler divergence between the trial pos-
terior Q(�; �) and the true posterior P (�; �jY D;XD;XB) given by (6). Since
the �rst term in (8) does not depend on Q(�; �), the free energy F [Q] is max-
imized when Q(�; �) is equal to P (�; �jY D;XD;XB). In this case, the free
energy F [Q] becomes equal to the log-evidence logP (Y DjXD;XB). The VB
method assumes a factorized form of Q(�; �):

Q(�; �) = Q�(�)Q�(�): (9)

This factorization assumption is weaker than the factorization assumption used
in [2], where each component of the parameters and the hyperparameters is
assumed to be factorized. Under the assumption of (9), the free energy is alter-
nately maximized with respect to Q�(�) and Q�(�). The maximized free energy
gives a lower bound on the log-evidence.



The alternate free energy maximization leads to the functional form of the
posterior given by

Q�(�) =QW (W j�)Q�(�); Q�(�) =Q�(�)Q� (�);

QW (W j�) =
JY
j=1

N (wj jwj ; �
�1��1); Q�(�) =

JY
j=0

� (�j jaj ; �
�1

j );

Q�(�) =� (�j
�;�); Q� (�) =� (� j
� ; ��
�1); (10)

where the ((J + 1)�D) matrixW � (w0;w1; : : : ;wJ )0, the ((J +1)� (J +1))
inverse-covariance matrix �, 
�;�; faj ; �j jj = 0; : : : ; Jg; 
� , and �� are deter-
mined in the following steps.

1) In the maximization step with respect to the posterior parameter distri-
bution Q�(�), the parameters in Q�(�) are updated:

� = �0�+A; W = ��1(�0Y D +AW 0); 
� = 
�0 +DM=2; (11)


�� =
1

2
Tr(Y D � �W )0(Y D � �W ) +

1

2
Tr(W �W 0)

0A(W �W 0) + 
�0�� ;

where the (M � (J + 1)) matrix �, the ((J + 1) � (J + 1)) matrix A, and the
(M � D) matrix Y D are de�ned as (�)mj = �j(xD(m)) = K(xD(m);xB(j)),
A = diag(�0; �1; : : : ; �J ), and Y D = (y(1); : : : ;y(M))0, respectively. The mean
weight of the posterior is given by hW i� �

R
d�Q�(�)W =W , and the mean of

the inverse-variance parameter � is given by h�i� = ��1. The covariance matrix
for the weight W is given by ��1��1. 
� is a degree of freedom of the Gamma
distribution Q�(�) and the variance of � is proportional to 
�1� .

2) In the maximization step with respect to the posterior hyperparameter
distribution Q�(�), the parameters in Q�(�) are updated:

aj =aj0 +
1

2
D; aj�

�1

j =aj0�
�1

j0 +
1

2

�
��1jjwj �wj0jj

2 +D(��1)jj
�
; (12)


� =
�0 + 
�0; 
� ��
�1 =
�0��

�1

0
+ 
�0�

�1:

The means of the hyperparameters are given by h�ji� �
R
d�Q�(�)�j = �j and

h�i� = �� .
3) After the convergence, this step selects the weights that have norm jjwj jj2

larger than the threshold valueWmin. The corresponding basis points xB(j) form
an old basis set Xold. In the next epoch, we select a new dataset (Xnew;Y new)
from the entire dataset (X;Y ). The basis set and the dataset in the next epoch
are given byXB = fXnew;Xoldg and (XD;Y D) = (fXnew;Xoldg; fY new;Y oldg),
respectively.

4) We have no speci�c information on the weights W new that correspond
to the new basis points Xnew. Therefore, we use the ARD prior de�ned in (4)
with a small aj0 and wj0 = 0. On the other hand, we do have information on
the weights W old that correspond to the old basis points Xold. Accordingly,
we use the obtained value of wj ; �j , and aj as the prior parameter in the next



epoch, i.e., wj0 = wj ; �j0 = �j , and aj0 = aj . An alternative method is to use
the obtained posterior QW (W oldj�) as the new prior for W old. In this case,
the matrix A in (11) becomes a block diagonal matrix and the block matrices
are given by Aold = �old and Anew = diag(�new) in an obvious notation. We
also have information on the inverse-variance parameter �, so we reset the prior
parameter as ��0 = �� ; 
�0 = 
�, and 
�0 = 
� or use the obtained posteriorQ�(�)
as the new prior for �.

We repeat the above process until all data (X;Y ) are processed. The pre-
dictive distribution after the learning can be calculated by using the posterior pa-
rameter distribution: P̂ (yjx;XB) =

R
dW d�P (yjx;XB ;W ; �)QW (W j�)Q�(�)

= T (yjW
0

��(x);�(1+�(x)0��1�(x)); 2
�); where T (yj�; C; 
) denotes the t-
distribution with mean �, variance C=(1�2
�1), and degree of freedom 
. �(x)
denotes the (J + 1)-dim. vector de�ned by �j(x) = K(x;xB(j))(j = 1; : : : ; J)
and �0(x) � 1.

4 Experiments

The applicability of our incremental Sparse Kernel Machine (SKM) was inves-
tigated by using large datasets. The Gaussian kernel is used in all experiments.
The problem is a prediction task for the chaotic Mackey-Glass (M-G) model,
which is de�ned by the di�erential equation

ds(t)=dt = �bs(t) + as(t� �)=(1 + s(t� �)10); (13)

where a = 0:2; b = 0:1, and � = 17 [8]. The task was to predict y = s(t + 85)
from the delay coordinate x = (s(t); s(t� 6); s(t � 12); s(t� 18)). The training
data were prepared by adding the Gaussian noise with di�erent levels to the
generated time-series. The N/S (noise-to-signal) ratios of the added noise were
0.0, 0.11, and 0.22 in terms of standard deviation. Three datasets with 500,
1000, and 10000 data points were used to train the incremental SKM, the �-
SVM [9, 10] and the Kernel Principal Components Regression (KPCR) method
[8]. The NRMSE (normalized root mean squared error) for the test dataset and
the corresponding number of bases are listed in Table 1. The SKM showed better
performance for the data with noise than did the �-SVM or the KPCR, while the
�-SVM and the KPCR showed better performance for noiseless data. It should
be noted that the SKM achieved good performance with a much fewer bases
than the �-SVM. The SKM selected moderate number of bases even when a
large amount of data were given. Fig. 1 shows the basis points (relevance vector)
obtained by the SKM for 10000 training data together with the M-G attractor.

5 Discussion

In this paper, we formulated the incremental Sparse Kernel Machine (SKM) and
showed the eÆciency of this method for large datasets. The Bayes estimation us-
ing the ARD prior automatically eliminated insigni�cant bases and gave a sparse



kernel representation for large datasets. We also examined another implementa-
tion of SKM, where the dataset in one epoch was the entire dataset and the basis
set was given byXB = fXnew;Xoldg. However, this implementation did not sig-
ni�cantly improve performance, while it required O((# of bases)�(# of data)2)
computation time. In this paper, we only considered regression problems. How-
ever, our method could be easily extended to classi�cation problems by using the
same method developed in [2]. Application of our method to real-world problems
remains a task for future research.

Table 1. NRMSE for SKM, �-SVM and KPCR. The number of bases are presented
in parentheses.

n/s=0.0 n/s=0.11 n/s=0.22
500 1000 10000 500 1000 10000 500 1000 10000

SKM 0.130 0.109 0.088 0.238 0.201 0.110 0.333 0.322 0.146
(145) (148) (169) (142) (250) (290) (223) (413) (334)

�-SVM 0.037 0.013 0.004 0.275 0.197 0.148 0.467 0.395 0.355
(462) (704) (3177) (333) (507) (2201) (334) (590) (2769)

KPCR 0.038 0.008 *** 0.307 0.280 *** 0.443 0.414 ***
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