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Abstract (243) There is an infinity of impedance parameter values, and thus different 

co-contraction levels, that can produce similar movement kinematics, from which the 

central nervous system must select one. Although signal-dependent noise (SDN) predicts 

larger motor-command variability during higher co-contraction, the relationship between 

impedance and task performance is not theoretically obvious and thus examined here. 

Subjects made goal-directed, single-joint elbow movements to either move naturally to 

different target sizes or voluntarily co-contract at different levels. Stiffness was estimated 

as the weighted summation of rectified EMG signals through the index of muscle 

co-contraction around the joint (IMCJ) proposed by Osu et al. (2002). When subjects 

made movements to targets of different sizes, IMCJ increased with the accuracy 

requirements, leading to reduced end-point deviations. Therefore, without the need for 

great accuracy, subjects accepted worse performance with lower co-contraction. When 

subjects were asked to increase co-contraction, the variability of electromyography 

(EMG) and torque both increased, suggesting that noise in the neuromotor command 

increased with muscle activation. In contrast, the final positional error was smallest for 

the highest IMCJ level. Although co-contraction increases the motor-command noise, the 

effect of this noise on the task performance is reduced. Subjects were able to regulate 

their impedance and control end-point variance as the task requirements changed, and 

they did not voluntarily select the high impedance that generated the minimum end-point 

error. These data contradict predictions of the SDN-based theory, which postulates 

minimization of only end-point variance, and thus require its revision. 
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INTRODUCTION 

The central nervous system (CNS) can control the mechanical impedance (inertia, 

viscosity, and stiffness) of its motor apparatus (Hogan, 1985; McIntyre et al., 1996). For 

example, viscosity and stiffness can be adjusted through mechanisms such as the 

co-contraction of muscles. Several studies have examined impedance changes in 

response to external perturbations. When trying to keep a hand position constant 

(Mussa-Ivaldi et al., 1984) or moving (Milner and Cloutier, 1993; Burdet et al., 2001) 

against external perturbing forces, limb stiffness increases. Precise timed increases in 

stiffness also occur in anticipation of predictable external events, such as catching a ball 

(Lacquaniti et al., 1993). Impedance changes can also parallel the learning of novel tasks. 

Milner and Cloutier (1993), Osu et al. (2002, 2003) and Franklin et al. (2003) reported 

that a co-activation of flexors and extensors is observed in the early stages of dynamic 

and kinematic learning, with co-activation decreasing with learning. Laursen et al. (1998) 

and Gribble et al. (2003) found that muscle co-contraction estimated as 

electromyographic (EMG) activity increased with the higher accuracy requirements of 

multi-joint arm movements. However, these previous studies did not examine the 

variability in EMG activity, torque or position dependence on task conditions such as 

stiffness or accuracy. Furthermore they did not address the effects of volitional 

impedance changes on attained movement variability or accuracy. Consequently, it is 

unclear why a particular set of impedance parameters is chosen for a given task from the 

infinite set of possible impedances that could produce the same endpoint kinematics and 

forces. 



4

A similar problem has been investigated for the kinematics of movement. Given a 

reaching task, an infinite number of hand paths and velocities can reach the goal. One 

framework for selecting a trajectory is optimal control, in which the solution with the 

smallest cost is selected. Several cost functions (Flash and Hogan, 1985; Uno et al., 1989; 

Nakano et al., 1999; Wada et al., 2001) have tried to account for the data, but these models 

are incapable of predicting a trajectory that takes into account the variance that changes 

according to the changes in motor commands and/or impedance. Since the minimum-jerk 

model is kinematic, there is no place for impedance. Similarly, the 

minimum-torque-change model considers joint torque but not muscle tension, so it 

cannot incorporate impedance within its framework. The 

minimum-motor-command-change model can actually deal with impedance because it 

models the motor command for each muscle but always predicts the minimum motor 

command, thus minimum impedance, which is at odds with the idea of different 

co-activation levels dependent on different accuracy requirements (Laursen et al., 1998; 

Gribble et al., 2003). These models neither have variance as a penalty term nor implement 

noise in motor commands but only deal with a mean or desired trajectory. A recent 

computational model of movement planning considering the presence of signal 

dependent noise (Task Optimization in the Presence of Signal-dependent noise: TOPS) 

may provide a unifying framework that could potentially account for both the kinematics 

and impedance of a movement. In this framework, the motor commands are assumed to 

be corrupted by noise, whose standard deviation increases with the level of the motor 

command (Harris and Wolpert, 1998; Jones et al., 2002). Such signal-dependent noise 
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(SDN) plays through the muscle dynamics and limb impedance, leading to variability in 

movement. Different motor commands should thus lead to different movement statistics. 

The TOPS model proposes that the cost depends on these statistics (Miyamoto et al., 

2002; Hamilton and Wolpert, 2002). The motor command is selected to minimize the cost, 

thus minimizing the deleterious effects of SDN on task performance.  

 As the SDN plays through the impedance of the limb, the impedance can be changed 

to modify the consequences of the noise. Similarly, the change in impedance alters the 

noise in the system because the co-contraction of muscles leads to larger muscle activities, 

resulting in a larger SDN. Assuming the presence of SDN, impedance should have 

complicated effects of both increasing and decreasing the movement accuracy. Given that 

changing either the motor command or impedance can affect the movement statistics, the 

TOPS model has a potential capability to coherently explain both trajectory planning and 

impedance control by including impedance parameters within its framework. Therefore, 

the first aim of this study is to experimentally examine the effects of increased impedance 

on movement accuracy.  

The principle of the TOPS model is that the objective of motor planning is to optimize 

task statistics in order to increase accuracy (cf. minimizing end-point variance in Harris 

and Wolpert, 1998). If this principle holds, we expect the optimal impedance for 

minimizing movement error to be selected in voluntarily executed movements. Then, if 

subjects are required to specifically increase impedance during movements, a decrease in 

accuracy is predicted because non-optimal impedance should generate poorer task 

statistics. On the contrary, if higher movement accuracy is required, subjects should 
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utilize the same impedance as in ordinary conditions, where impedance is already 

optimized to maximize accuracy. The second aim of this paper is to examine whether 

these predictions can be experimentally confirmed. 

To investigate the relationship between impedance and movement variability, we 

examined two tasks. In the first task (target size), accuracy constraints were varied and 

movement variability and impedance were estimated. In the second task (voluntary 

co-contraction), impedance was voluntarily controlled and movement variability and 

accuracy were examined. From the results of these two experiments, we found that 

impedance does have the above mentioned complicated effects of both increasing SDN 

and decreasing end-point accuracy and that the data contradicted the predictions made by 

the TOPS model. 
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MATERIALS AND METHODS 

Thirteen male subjects, aged 20-29 years, participated in at least one of the two 

experiments, and 11 of them were naïve as to the purpose of the study. Nine subjects 

participated in the target-size experiment and nine subjects participated in the voluntary 

co-contraction experiment. For the five subjects who participated in both experiments, 

the target-size experiment was first carried out and then the voluntary co-contraction 

experiment was conducted on another day. Each experiment took several hours, since it 

consisted of EMG electrode attachment, isometric force generation for parameter 

calibration of IMCJ, preparatory trials to select movement times specific to individual 

subjects, and main trials. Accordingly, a one- to two-hour lunch break and frequent short 

rests were allowed. We did not try to estimate muscle viscosity in this study. However, 

from previous studies (Gomi and Osu, 1998; Osu and Gomi, 1999), we expected that 

muscle viscosity would co-vary with muscle torque, muscle stiffness, and EMG activity. 

The Institutional Ethics Committee approved the experiments, and subjects gave 

informed consent prior to participation.  

 

Experimental apparatus 

Subjects sat on a chair and rested their right elbow on a sponge fixed to a table (Fig. 

1A). The table was adjusted to lift the subject’s arm to shoulder level so that movements 

were made in a horizontal plane. The upper arm movement was constrained by fixing the 

shoulder position with a harness and the elbow position with the sponge. The subject’s 
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wrist was braced. To reduce friction between arm and table, the arm was attached to a 

board that levitated above the table by an air sled (Fig. 1A). Subjects were asked to move 

only their elbow joint. An OPTOTRAK 3020 was used to measure the position of a 

marker placed on the end of a 9-cm vertical bar, which was grasped by the subjects. The 

marker position was sampled at 500 Hz and projected as a cross on a CRT screen, placed 

in front of the subject, representing current hand position (Figs. 1B and C). Subjects 

performed the task while looking only at the CRT screen.  

 

Electromyography 

Surface EMG activity was recorded using pairs of silver-silver chloride surface 

electrodes. The activities of two elbow muscles, the brachioradialis and the medial head 

of the triceps brachii, and two biarticular muscles, the biceps brachii and the long head of 

the triceps, were recorded. The EMG signals were analog filtered at 25 Hz (high pass) and 

1.0 kHz (low pass) with a Nihon Kohden amplifier (MME-3132) and then sampled at 2.0 

kHz. All EMG comparisons between different conditions as well as the calibration of 

IMCJ involved data that were recorded on the same day without removing the electrodes. 

From a previous study using the same methods (Osu et al., 2002), we confirmed the 

stationarity of the EMG electrodes by comparing torque-EMG relationships before and 

after the main experiment.  

 

Stiffness estimation by IMCJ 

Gomi and Kawato (1996) and Burdet et al. (2000, 2001) measured stiffness during 
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multijoint arm movements by applying mechanical perturbations with a robotic 

manipulandum. Previous studies suggested linear relationships among stiffness, torque, 

and surface EMG activity signals (Tsuji et al., 1995; Osu and Gomi, 1999). Based on 

these previous studies, Osu et al. (2002) proposed an index of muscle co-contraction 

around the joint (IMCJ) to evaluate joint viscoelasticity during movements. IMCJ was 

defined as the summation of absolute values of antagonistic muscle torques around the 

joint, and it was computed from the linear relation between surface EMG activity and 

joint torque. Osu et al. (2002) confirmed that IMCJ during isometric contraction, as well 

as during movement, correlated well with joint stiffness estimated by the conventional 

method, i.e., applying mechanical perturbations, and proposed a formula to estimate 

stiffness from EMG activity through the IMCJ. In this paper, based on Osu et al.’s (2002) 

method, stiffness during movement was computed for the elbow joint in each trial. 

Assuming that surface EMG activity is proportional to muscle tension, elbow torque τ

can be expressed as follows: 

τ = a1u1 − a2u2 + a3u3 − a4u4. (1) 

Here, u1 and u2 denote surface EMG activity of the elbow flexor and extensor, and u3

and u4 denote surface EMG activity of the biarticular flexor and extensor. The 

parameters ai include both the moment arm and conversion factor from the muscle 

activity to muscle tension. Using the parameters ai , the IMCJ of the elbow is computed as 

follows: 

 IMCJ = a1u1 + a2u2 + a3u3 + a4u4 . (2) 

On each day of the experiment and before the main experiment, subjects were asked to 
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generate six different isometric force temporal patterns with three different levels of force 

magnitude (maximum forces of 5, 10 and 15 N) with five repetitions (90 trials = 6 x 3 x 5). 

The force temporal patterns were: i) extend and keep, ii) extend-flex-relax, and iii) 

extend-relax-extend-relax-extend, with the same three patterns for flexion, all executed 

within three seconds. The torques and EMG activity recorded in these calibration 

experiments were used to estimate the parameters ai of the IMCJ by the 

least-square-error method (Osu et al., 2002). 

We note that the estimation of stiffness from IMCJ should not be taken as a rigorous 

method. We well realize the existence of variable moment arms during movements, 

nonlinear properties of muscle tension dependent on muscle length, shortening velocity, 

and motor commands, all of which work against simple linear models such as IMCJ to 

estimate the stiffness from EMG activity. However, quantitatively speaking, IMCJ was 

found to be a good first approximation of stiffness even during movement, which was 

then independently measured by mechanical perturbations (Osu et al., 2002). At the very 

least, IMCJ is a much superior and more systematic way of weighting EMG activity from 

multiple muscles while estimating stiffness than any arbitrary method of weighting (cf. 

Gribble et al., 2003). In order to demonstrate the robustness of the obtained results for the 

weighting of EMG activity from multiple muscles, we analyzed identical data using the 

following two different weighting methods. One is to normalize each muscle’s EMG 

activity by its maximum value, which is the conventional normalization technique but 

does not lead to a stiffness estimate. The second method is to apply the smooth temporal 

filter from EMG activity to muscle tension proposed by Koike and Kawato (1995) to data 
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from both calibration and main experiments to represent the known electro-mechanical 

delay in computing IMCJ. All three methods of weighting EMG activity led to identical 

statistical results, and thus only the results obtained by IMCJ without filtering are 

reported here. 

Furthermore, we note that hand paths were almost identical across trials and subjects 

because only elbow rotation was included, and the joint torques that were generated were 

also very severely controlled to be the same because the movement duration was 

experimentally controlled. With these stringent experimental paradigms, we expect that 

any change in EMG activity is mainly due to a change in co-contraction and stiffness, and 

not to changes in movement trajectory, velocity, or torque profiles. This at least validates 

the usage of IMCJ as a “relative” index for stiffness.  

To confirm impedance changes in a more primitive way, we compared 

root-mean-square (RMS) EMG of each muscle. Assuming that EMG and stiffness have a 

monotonic relation, if the EMGs of all muscles are larger in a particular condition than in 

other conditions, we can conclude that stiffness was larger in that condition. The RMS 

EMG was computed during the latter half of the movement, that is, 250 ms before the end 

of the movement to the end of the movement defined by an acceleration threshold (see 

below). 

 

Task 

The task was a single-joint extension or flexion movement of the elbow, and it 

followed the experimental paradigm of Gottlieb et al. (1989). In the target-size 
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experiment, subjects were asked to move their hand from a start circle with a radius of 1.0 

cm and enter a target circle with a different radius displayed on a CRT within a desired 

movement duration (Fig. 1B). In the voluntary co-contraction experiment, subjects were 

asked to move their hand from a start circle with a radius of 1.0 cm and come as close as 

possible to a small target point (3-mm radius) displayed on the CRT within a desired 

movement duration (Fig. 1C). The shoulder angle (θ1) was fixed to 94 degrees. The start 

and target positions were either an elbow angle (θ2) of 41 degrees or 97 degrees, 

depending on whether the movement was extension or flexion (Fig. 1A). Extension 

movements were first conducted in a batch, and then flexion movements were carried out. 

The out-and-in movement duration was defined as the time (sec) between when the hand 

exited the start circle and entered the target circle and was used throughout the 

experimental task control. Following the isometric force generation, subjects conducted 

flexion and extension movements of 20 trials each (preparatory experiment). Because this 

preparatory experiment was conducted, we did not observe any apparent learning effects 

in the main experiments. The desired out-and-in movement duration was predetermined 

by its average over the last ten trials during the preparatory experiment to make the 

movement duration comfortable for each subject. The desired out-and-in movement 

durations ranged between 0.232 and 0.325 (sec) for all subjects in the target-size 

experiment and between 0.250 and 0.334 (sec) in the voluntary co-contraction 

experiment. For each subject, only movements with an allowable error of ±10% of the 

pre-specified out-and-in desired movement duration were recorded as successful 

movements. A computer program checked whether the movement duration was within 
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the allowable range, and a warning of ‘too early,’ ‘too late,’ or ‘out of target’ was fed back 

to the subjects after each trial when the hand entered the target circle too soon, too late, or 

did not end within the target circle, respectively. For the target-size experiment, average 

success rates and standard deviations across subjects for large, medium, and small targets 

were 70±14%, 62±14%, and 45±13% respectively. For the voluntary co-contraction 

experiment, average success rates and standard deviations across subjects for normal, 

medium, and high co-contraction were 58±20%, 66±11%, and 62±25% respectively. 

 

Experiment I: Changed target size  

The task was to move (flex or extend) the hand to different-sized target circles. The 

radii of the target circles were 3.5 cm, 2.5 cm, and 1.5 cm for large, medium, and small 

conditions, and they were presented in this order to subjects. Subjects were requested to 

bring their hand within a target at the end of the movement. We recorded 40 successful 

trials in which the hand reached the target within the allowable time range for each target 

size and for either flexion or extension; 240 successful trials (2 directions x 3 sizes x 40 

trials) were recorded and used for analysis. The desired out-and-in movement duration 

was corrected for the different distances that were traveled to the different target sizes. No 

instructions were given on co-contraction. Although EMG signals were recorded, muscle 

activity was not fed back to the subjects (Fig. 1B). 

 

Experiment II: Changed co-contraction level  

The task was to execute extension or flexion movement under three levels of muscle 
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co-contraction: a normal level with elbow muscles relaxed; a high level in which elbow 

muscles were strongly co-contracted so that the arm became stiff; and a medium level of 

co-contraction between normal and high. In order to avoid presentation of the target 

region that explicitly instructs the permitted end-point variability, a small target point was 

presented instead of a target circle. The subjects moved their hand from a start circle to as 

close as possible to the target point. The out-and-in movement duration was measured as 

the time interval between when the hand exited the start circle and entered a virtual 

end-point-domain circle with a radius of 5 cm, whose range was shown by two tangent 

lines on the CRT (Fig. 1C). 

In the medium and high levels, subjects had to voluntarily co-activate their muscles 

during movements. Because the strength of muscles varies between subjects, the 

activation levels were set before the main experiment in preparatory trials. In this phase, 

20 trials each for the normal and high conditions, in which the arm was relaxed or 

stiffened, and for both flexion and extension, were preliminarily recorded when the hand 

reached the virtual end-point-domain circle within the time limit. The elbow stiffness in 

80 movement trials (2 co-contraction conditions x 2 directions x 20 trials) was estimated 

by IMCJ. For each subject, the observed IMCJ range was divided into high, medium and 

low ranges. For each trial in the main experiment, elbow IMCJ was computed to 

determine whether it was within the predetermined range of the corresponding 

co-contraction condition. The success or failure of achieving this required IMCJ level 

was fed back to the subject at the end of each trial. To help subjects set an appropriate 

co-contraction, the recorded EMG signals were shown on the CRT in real time to the 
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subjects from before the start of movement (Fig. 1C). We recorded 40 successful trials for 

each level of co-contraction and for each direction of flexion and extension. Altogether, 

240 successful trials were obtained (3 stiffness conditions x 2 directions x 40 trials). The 

order of the three co-contraction conditions was counterbalanced across subjects. 

 

Analysis 

Position data were digitally filtered by a third-order Butterworth filter with an upper 

cutoff frequency of 15 Hz. Derivatives of the position data were computed by applying a 

three-point local polynomial approximation. The start and end points of each movement 

were determined using an angular acceleration with a 1.0 rad/s2 threshold. The movement 

duration determined from these start and end points was called kinematic movement 

duration, and it was nearly two times longer than the out-and-in movement duration. The 

out-and-in movement duration was used only to control the movement duration during 

the main experiment, and the kinematic movement duration was used for all data analyses. 

The averages of kinematic movement durations for the three target sizes and for 

individual subjects were within the range of 0.462–0.533 sec, and those for the voluntary 

co-contraction experiment were within 0.520–0.616 sec. The actuated torque of the 

elbow τ was calculated as the product of the estimated inertial moment of the forearm 

from each subject’s body size and the angular acceleration of the elbow joint. We did not 

include a viscosity term in the calculation of the torque because most of the viscosity 

measured around a joint arises from biochemical and mechanical processes within the 

muscle rather than from the properties of the joint (Akazawa, 1994). The effect of gravity 
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was ignored because the arm was supported against gravity by the air sleds to reduce 

friction. 

We examined whether experimental conditions such as target sizes and the level of 

co-contraction affect EMG activity, torque, position, and end points. Accordingly, we 

first computed the ensemble-averaged temporal profiles over 40 trials of each signal. 

Ensemble-averaged rectified EMG activity of the i-th muscle at time t was as follows: 

EnsAveEi t( )= 1

40
ei

j t( )
j=1

40

∑ (3) 

where ei
j t( ) denotes EMG activity of the i-th muscle at time t of the j-th trial. 

Ensemble-averaged torque at time t was  

EnsAveT t( )= 1

40
τ j t( )

j=1

40

∑ (4) 

where τ j t( ) denotes torque at time t of the j-th trial. Similarly, ensemble-averaged 

x-position and y-position were computed as follows: 

EnsAvePx t( )= 1

40
x j t( )

j=1

40

∑ (5) 

EnsAvePy t( )= 1

40
y j t( )

j=1

40

∑ (6) 

where x j t( ) and y j t( ) denote x-position and y-position at time t of the j-th trial. Signals 

are aligned so that the first 1.0 rad/s2 absolute angular acceleration threshold of ballistic 

movements determines time zero. Movement duration for each signal was normalized 

within the same experimental condition to mean movement duration of that condition, 

without changing the amplitude of the signal (see below for detail). The 

ensemble-averaged temporal waveforms of IMCJ and velocity profiles were computed in 
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the same way. These allow the deviation time course of each trial to be calculated as the 

difference from the ensemble-averaged time courses. The ensemble-averaged deviation is 

defined as the root mean square of this deviation time course over 40 trials. Therefore, 

ensemble-averaged deviation of rectified EMG of the i-th muscle and ensemble-averaged 

deviation of torque at time t are computed as follows: 

EnsDevEi(t) = 1
40

EnsAveEi t( )− ei
j t( )( )2

j=1

40

∑
 

 
 
 

 

 
 
 

0.5

 (7) 

EnsDevT t( )= 1
40

EnsAveT t( )−τ j t( )( )2

j=1

40

∑
 

 
 
 

 

 
 
 

0.5

 (8) 

In other words, we studied the variability across trials at each point in time. As already 

mentioned in the description of stiffness estimation by IMCJ, we examined the effect of 

first smoothing the EMG signal by the temporal filter of Koike et al. (1995), and the same 

results were obtained regarding the relation between EMG amplitude and variance.  

Finally, we computed the time-averaged magnitude and deviation on a per trial basis. The 

time-averaged EMG of the j-th trial was computed as mean rectified EMG between the 

time at the beginning and the time at the end of movement tf, summed over all muscles. 

TimeAveE j = 1
t fi=1

4

∑ ei
j t( )

t=1

t f

∑ (9) 

The time averaged IMCJ magnitude of the j-th trial was computed in the same way: 

TimeAveIMCJ j = 1
t f

IMCJ j t( )
t=1

t f

∑ (10) 

The time-averaged deviation of the j-th trial was computed as the square root of the mean 

squared deviation time course between the time at the beginning and the time at the end of 
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movement tf:

TimeDevE j = 1

t f

EnsAveEi t( )− ei
j t( )( )2

t=1

t f

∑
i=1

4

∑
 

 
 
 

 

 
 
 

0.5

 (11) 

TimeDevTj = 1

t f

EnsAveT t( )−τ j t( )( )2

t=1

t f

∑
 

 
 
 

 

 
 
 

0.5

 (12) 

TimeAvePj = 1

t f

EnsAvePx t( )− x t( )( )2
− EnsAvePy t( )− y t( )( )2{ }

t=1

t f

∑
 

 
 
 

 

 
 
 

0.5

 (13)  

The amount of scatter at end-points, that is, end-point deviation, was indicated by the 

standard deviation of end-point positions. On the other hand, the end-point error was 

defined as the root mean square of the distance between the end-point positions and the 

center of the small target point. End-point deviation and end-point error are generally 

different because the average end-point position deviates from the target center (Gribble 

et al., 2003). Also, end-point error is not an appropriate terminology for an analysis of the 

target-size experiment because subjects were not required to reach for the centers of 

target circles, and movements ending within target circles were regarded as successful. To 

examine the effect of SDN to various level of movement variance on a trial-by-trial basis, 

we investigated the correlation between the time-averaged IMCJ of an individual trial  

(Eq. 10) and the time-averaged deviations of the torque (Eq. 12), position (Eq. 13), and 

end-point of the hand in that trial. In addition, we investigated the correlation between the 

time-averaged EMG activity (Eq. 9) and the time-averaged EMG deviation (Eq. 11). The 

correlation coefficients obtained from these trial-by-trial analyses are shown in Fig. 11. 

To investigate SDN during movements, we computed correlation coefficients and slopes 



19 

for liner relationships between ensemble-averaged EMG (Eq. 3) and ensemble-averaged 

EMG deviation (Eq. 7) at each time point for each muscle of each subject. 

In the computations of ensemble-averaged temporal waveforms and time-averaged 

deviations of position and torque, the time was normalized within the same experimental 

conditions to mean movement time of that condition. That is, for each trial, each value 

(position, velocity and torque) was first computed, where the movement beginning and 

end was defined by the acceleration threshold, as explained above. Then each value was 

scaled only in time domain to mean movement time of each condition by re-sampling 

using spline interpolation. Therefore, the normalization did not change the amplitude of 

each signal. We also adopted two other methods of ensemble averaging without time 

normalization. In both methods, the physical time was used in ensemble averaging over 

40 trials, and all data in one condition were first aligned at the time of movement start. In 

the second method, all data in one condition were cut at the time of the termination of the 

movement whose duration was shortest in that condition. In the third method, all data in 

one condition were cut at the time of the termination of the movement whose duration 

was longest in that condition, and then the values between the termination of each 

movement and the time of data cutting were fixed to the value at the end of each 

movement to avoid distortion due to feedback correction or oscillation. Here, we show 

the results using the first method because the results obtained from all three methods are 

similar. 

In order to examine the effect of the target-size or muscle co-contraction levels on 

mean performance, we carried out a 2-way repeated measures analysis of variance 
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(repeated measure ANOVA, target-size or co-contraction levels x movement directions), 

with subjects as a random factor, for time-averaged IMCJ, time-averaged deviations of 

EMG activity, torque and position, and end-point as well as end-point errors and RMS 

EMG using data for all subjects. F-ratios were computed by treating the target size or 

co-contraction levels and movement directions as within-subject factors. This was 

followed by Tukey’s HSD test. 
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RESULTS 

 

Signal-dependent noise during movements 

In order to examine signal dependent noise during movements, we computed signal 

magnitude and its deviation at each time point of movements. Because EMG signals 

during movements are not stationary, time courses of EMG magnitude were computed as 

an ensemble average of rectified EMG time course over 40 trials (Eq. 3). Then, time 

courses of EMG deviations were computed as the root mean square of difference between 

each one and the ensemble-averaged EMG time course over 40 trials (Eq. 7). Then, EMG 

deviation at each time point was plotted against EMG magnitude at that time point for 

each muscle and each movement direction, for each condition of each experiment, and for 

each subject. Figure 2 shows plots of a typical subject during a voluntary co-contraction 

experiment. Blue, red, and green dots denote normal, medium, and high co-contraction 

conditions, respectively. In all comparisons, EMG deviation linearly increased with EMG 

magnitude. The mean and standard deviation of correlation coefficients across muscles, 

subjects and conditions were 0.843±0.092 for extension and 0,821±0.099 for flexion in 

the target-size experiment, and 0.814±0.087 for extension and 0.814±0.088 for flexion in 

the voluntary co-contraction experiment. We also computed slopes between EMG mean 

and deviation for each comparison. Figure 3 shows the histogram of the slopes for each 

movement direction. The slopes widely raged from around 0.5 to 3 with a mean of 

1.192±0.422, which include the predicted slopes of uniform, Gaussian, and Laplacian 
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distribution (0.58, 0.76, and 1.00, respectively) within the 2SD region, suggesting that the 

observed linear relationship is not a trivial mathematical result (see Discussion for detail). 

The slopes were significantly larger when muscles were working as antagonists than as 

agonists for both target size (t-test, t(214) = 4.72; P < 0.0001) and voluntary 

co-contraction experiment (t(214) = 3.60; P < 0.0005).  

 

Experiment I: Changed target size  

The averages and standard deviations of the kinematic movement durations across 

subjects for the large, medium and small target sizes were 0.498±0.069, 0.497±0.069, and 

0.491±0.062 sec, respectively, and were not significantly different. Figure 4 shows the 

hand paths, end-point distributions (A), angular velocity profiles (B), torque profiles (C), 

EMG time courses of the four muscles (D), and stiffness profiles (E) of a typical subject 

recorded for the different target sizes for extension movements. These characteristics are 

in good agreement with previous studies (Gottlieb et al., 1989). The end-points of the 

hand were distributed along an arc within target circles (Fig. 4A). Therefore, the 

end-point deviation increased as the target size increased in accordance with our 

experimental design (see below and Fig. 7F). The angular velocity profiles were 

bell-shaped, and corrective movements were not observed. Although the hand paths (A), 

velocity (B), and torque profiles (C) were similar for the three different target sizes, 

co-activation of bi-articulator muscles (D) and resulting IMCJ increase (E) were evident 

in the latter half of movement for the more stringent accuracy requirements. 

Figure 5 shows the ensemble-averaged time courses across all subjects and all trials 
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classified by target size for the summed EMG activity over the four muscles (A) (Eq. 3), 

IMCJ (B), torque (C) (Eq. 4), and velocity (D), as well as the ensemble-averaged 

deviations across all subjects for the summed EMG activity (E) (Eq. 7; summed over the 

four muscles before taking square root), torque (F) (Eq. 8), and position (G). The data 

from extension (upper panel) and flexion (lower panel) are shown separately. Blue, red, 

and green indicate large, medium, and small target sizes, respectively. While average time 

courses for torque (C) and velocity (D) were similar for different target sizes for both 

extension and flexion, the summed EMG activity (A) and IMCJ (B) profiles of the small 

target size were larger (green curves; see Figs. 7A and B for statistics), suggesting that 

co-contraction increased as target size decreased. In good agreement with the assumption 

of SDN, the EMG deviations were also generally larger for the small target size (Fig. 5E). 

However, no general or marked differences between different target sizes were observed 

for the torque and position deviations (Figs. 5F and G), except for the position deviation 

around movement end as shown in the magnified inset (Fig. 5H), suggesting that noise 

observed in the motor command was attenuated at torque and position levels. Further, 

around 0.4 sec after movement onset, three curves representing the positional deviations 

for the three target sizes came very close in extension and crossed in flexion. Accordingly, 

after 0.4 sec the positional deviation for the smaller target size was smaller in accordance 

with the task requirements, despite the large EMG deviation. 

To confirm that co-contraction increased later in the movement for higher accuracy 

requirements, we plotted the late RMS EMG of each muscle for each subject and 

movement direction against target sizes (Fig. 6). For all four muscles, late RMS EMG for 
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small target was significantly larger than that for medium and large targets (repeated 

measures ANOVA; see figure legend and insets for statistics). This suggests that 

co-contraction was utilized to control end-point accuracy. 

Figure 7 shows observations similar to those shown in Fig. 5 and their statistics in 

time-averaged data. Figs. 7A and B again demonstrate an increased motor command with 

a decreased target size. Figure 7A shows the means and standard deviations across all 

subjects for each target size of the summed EMG activity that was time-averaged over the 

entire movement duration. Figure 7B shows those for the time-averaged IMCJ. The gray 

lines denote extension and the black lines denote flexion data. The horizontal lines in Fig. 

7 indicate significant comparisons in post-hoc tests (p < 0.05). The main effect of the 

target size was significant for the amount of muscle activity in terms of the time-averaged 

summed EMG activity (F(2,16) = 10.86; P < 0.005) (Fig. 7A) as well as the 

time-averaged IMCJ (F(2,16) = 12.22; P < 0.001) (Fig. 7B). The muscle co-contraction, 

examined either as the time-averaged summed EMG activity or the time-averaged elbow 

IMCJ, was significantly higher in the small target than the medium and large targets for 

both flexion and extension. Other figures demonstrate that target size has a different 

effect on different deviations. Figs. 7C, D, and E show the means and standard deviations 

across subjects for each target size of the deviations that were time-averaged over the 

entire movement duration for EMG activity, torque, and position, respectively (see 

Methods for equations of time-averaged deviations). Figure 7F shows the mean and 

standard deviation of the end-point deviation across subjects for each target size. The 

main effect of the target size was significant for the time-averaged deviation of EMG 
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activity (F(2,16) = 12.27; P < 0.001), and the end-point deviation (F(2,16) = 157.80; P <

0.0001). The EMG variability was significantly largest for the small targets both for 

extension and flexion, which is consistent with SDN.�In contrast, the end-point deviation 

was significantly larger in the large target than the medium target and significantly larger 

in the medium target than the small target; consequently, the experimental manipulation 

of the end-point variability went well for the target-size experiment. 

Similar trends to Figs. 5 and 7 were observed when EMG activity, torque, and 

position ensemble averages and deviations were calculated using the shortest movement 

duration of each condition (the second method; see MATERIALS AND METHODS) or 

when using duration of each movement and extrapolate by the final value until longest 

movement duration (the third method; see MATERIALS AND METHODS). The 

summed EMG activity (F(2,16) = 8.35; P < 0.005 for shortest movement duration, 

F(2,16) = 11.90; P < 0.001 for longest movement duration) and IMCJ (F(2,16) = 9.12; P

< 0.005 for shortest movement duration, F(2,16) = 11.85; P < 0.001 for longest 

movement duration)  were significantly different and were largest for the small targets.  

 

Experiment II: Changed muscle activation level  

The means and standard deviations of the kinematic movement durations across 

subjects for the normal, medium and high co-contraction conditions were 0.581±0.073, 

0.558±0.071, and 0.537±0.062 sec, respectively, and decreased significantly for the 

higher co-contraction level, although the predetermined desired out-and-in movement 

duration was the same for the three conditions. Figure 8 shows the hand paths, end-point 
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positions, angular velocity profiles, torque profiles, EMG time courses of the four 

muscles, and IMCJ profiles recorded for the three levels of co-contraction for the same 

subject, in a similar format to Fig. 4. The end-points of the hand were distributed along an 

arc around the target point more narrowly for the larger co-contraction level (Fig. 8A). 

The angular velocity profiles were bell-shaped, and corrective movements were not 

observed. Although the EMG activity of all four muscles (Fig. 8D) and IMCJ (Fig. 8E) 

were much larger over the entire movement duration for the higher level of co-contraction, 

the ensemble-averaged hand paths (Fig. 8A), velocity (Fig. 8B), and torque profiles (Fig. 

8C) were similar among the three co-contraction conditions.  However, we must note that 

the velocity profiles for high co-contraction were more symmetrical than those for low 

co-contraction (Figs. 8B and 9D). The velocity peak in low co-contraction condition was 

slightly, but significantly earlier than in medium and high co-contraction conditions 

(F(2,16) = 20.50; P < 0.0001). Mean velocity peak in low co-contraction condition was 

significantly earlier than the mid point of movement duration (t-test, t(8) = 2.67; P < 0.05 

for extension, t(8) = 3.41; P < 0.01 for flexion) while that in high co-contraction condition 

was not significantly different (t(8) = 1.05; P = 0.32 for extension, t(8) = 1.83; P = 0.10 

for flexion), suggesting that velocity profiles for high co-contraction condition were 

significantly more symmetrical.  

Figure 9 shows the ensemble-averaged time courses of the summed EMG activity, 

IMCJ, torque, and velocity as well as the ensemble-averaged deviation time courses of 

the summed EMG activity, torque, and position classified by co-contraction levels 

combining data from all subjects and all trials, in a similar format to Fig. 5. Blue, red, and 
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green indicate normal, medium, and high co-contraction conditions, respectively. While 

the average time courses for the torque and velocity were similar for different 

co-contraction levels (Figs. 9C and D), the summed EMG activity and IMCJ profiles for 

the larger co-contraction conditions were larger (Figs. 9A and B), which shows that 

subjects actually followed the instruction and could voluntary control co-contraction 

levels. In good agreement with SDN assumption, the time courses of EMG activity, 

torque, and position deviations were generally larger for the larger co-contraction 

conditions (Figs. 9E, F and G), except for the position deviation around movement end as 

shown in the magnified inset (Fig. 9H). Around 0.5 sec after the movement onset, 

however, three curves representing the positional deviation for the three co-contraction 

levels converged and/or crossed. That is, after 0.5 sec, the positional deviation for the 

different co-contraction levels became nearly indistinguishable, suggesting attenuation of 

SDN. Data from extension and flexion were qualitatively similar. 

Figure 10 shows observations similar to those shown in Fig. 9 and their statistics in 

time-averaged data. Figs. 10A and B show the mean and standard deviation across all 

subjects of the time-averaged summed EMG activity and time-averaged IMCJ, 

respectively, for each co-activation requirement. The gray lines denote extension, and the 

black lines denote flexion. The horizontal lines indicate significant comparisons in 

post-hoc tests (P < 0.05). The main effect of the muscle co-activation requirement was 

significant for the amount of muscle activity in terms of time-averaged summed EMG 

activity (F(2,16) = 29.09; P < 0.0001) as well as time-averaged IMCJ (F(2,16) = 17.16; P

< 0.0005). Furthermore, the muscle activity, that is, arm IMCJ, was significantly smallest 
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in the normal level and significantly largest in the high level. Accordingly, the main task 

design of the voluntary co-contraction experiment was fulfilled. Other figures 

demonstrate that the co-activation level has different effect on different deviations. Figs. 

10C, D, and E show the mean and standard deviations across all subjects for 

time-averaged deviations of EMG activity, torque, and position, respectively, for each 

co-contraction requirement. Figs. 10F and G show the mean and standard deviations 

across all subjects for the position deviation at the end point as well as the end-point error 

for each co-contraction requirement. A larger variability in EMG activity, torque, and 

position was observed for the higher muscle activation level, although there was no such 

trend for the end-point deviation, and the relationship was reversed for the end-point error. 

The main effects of the muscle activation level were significant for variabilities in EMG 

activity (F(2,16) = 40.04; P < 0.0001), torque (F(2,16) = 66.53; P < 0.0001), position 

(F(2,16) = 11.74; P < 0.001), and end-point error (F(2,16) = 6.26; P < 0.01). The 

variabilities in EMG activity and torque were significantly larger in the high level and 

smaller in the normal level. The end-point error in the normal level was significantly 

larger than in the medium and high levels for both extension and flexion. 

The same trends shown in Figs. 9 and 10 were observed when the EMG activity, 

torque and position deviations were calculated using the shortest movement duration of 

each condition (the second method; see MATERIALS AND METHODS) or when using 

the duration of each movement and extrapolating by the final value until the longest 

movement duration (the third method; see MATERIALS AND METHODS). That is, 

these variabilities were significantly different (EMG deviation; F(2,16) = 28.59; P <
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0.0001 for shortest duration, F(2,16) = 30.45; P < 0.0001 for longest duration, torque 

deviation; F(2,16) = 32.19; P < 0.0001 for shortest duration, F(2,16) = 30.78; P < 0.0001 

for longest duration, position deviation; F(2,16) = 10.10; P < 0.005 for shortest duration, 

F(2,16) = 8.84; P < 0.005 for longest duration) and larger at the high level but smaller at 

the normal level. 

The observed reversed relationship between motor command magnitude and 

end-point error suggests that SDN is attenuated as the space shifts from intrinsic motor 

command space to extrinsic task space. Noise was highly positively correlated with 

magnitude of motor command at EMG or torque level but was negatively correlated at 

target achievement level. To further demonstrate the degradation of correlation between 

motor command magnitude and deviations, we computed the correlation coefficients 

between the co-contraction magnitude and EMG deviation, torque deviation, position 

deviation, end-point deviation, and end-point error on a trial-by-trial basis (Figure 11). 

For each movement trial of an individual subject, such as those shown in Fig. 8, the 

following seven quantities were first computed. The first two were the summed rectified 

EMG activity and its deviation, both of which were time-averaged over movement 

duration. The equations are given in Materials and Methods (Eqs. 9 and 11). The third to 

fifth were IMCJ and the deviations of torque and position, all of which were 

time-averaged over movement duration. The equations are given in Materials and 

Methods (Eqs. 10, 12, and 13). The last two quantities were end-point deviation and the 

end-point error. Then, for each subject and for each movement direction, a correlation 

coefficient was computed from 120 movement trials (40 trials x 3 stiffness conditions) 
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between two quantities for each of the following five pairs. The first is between the 

time-averaged summed EMG activity and its time-averaged deviation. The second is 

between the time-averaged IMCJ and the time-averaged torque deviation. The third is 

between the time-averaged IMCJ and the time-averaged position deviation. The fourth is 

between the time-averaged IMCJ and the end-point deviation. The fifth is between the 

time-averaged IMCJ and the end-point error. Figure 11A plots these 18 correlation 

coefficients (2 movement directions x 9 subjects) for the voluntary co-contraction 

experiment while connecting the same subject by the thin line and representing the same 

movement direction by the same symbol. The light and dark shaded regions show the 

insignificance ranges of correlation coefficients, outside of which the coefficient is 

statistically different from zero for an individual data item and the data from all subjects, 

respectively. For the relationship between EMG activity and EMG variability, the 

correlation coefficients of all subjects were positive and very close to 1 (Fig. 11A 

leftmost). The correlation coefficients of IMCJ and torque variability were positive and 

relatively high and significant for all but one subject (Fig. 11A second from left). The 

correlation coefficients of IMCJ and position variability were positive for 15 out of 18 

cases and relatively small and insignificant for most subjects (Fig. 11A middle). The 

correlation between IMCJ and end-point deviation was positive or negative depending on 

the subject and movement direction, and most coefficients were small in magnitude and 

insignificant (Fig. 11A second from right). The correlation coefficients between IMCJ 

and end-point error were negative in 13 out of 18 cases and some were significant (Fig. 

11A rightmost). Figure 11A also shows, by thick black lines and asterisks, the correlation 
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coefficients for the five relationships computed from all 2,160 trials of all subjects. The 

correlation coefficient was close to 1 and significant for EMG deviation. It was positive 

and significant for torque deviation. It was slightly positive but significant for position 

deviation. It was slightly negative but significant for end-point deviation, and negative 

and significant for end-point error. Figure 11B plots the same correlation coefficients for 

the relationships from the target-size experiment and shows similar trends.  

 

DISCUSSION 

We showed that when subjects made single-joint elbow movements to targets of different 

diameters, IMCJ and EMG variability increased with the required accuracy of the task 

and reduced end-point variability. When subjects were asked to increase co-contraction 

during movements, the temporal profiles of EMG activity and torque both increased in 

variability. However, final positional error was largest for the lowest and normal 

co-contraction levels. The qualitative trends of EMG activity, torque, and position 

variabilities and end-point deviations and error with respect to increased IMCJ were 

similar between these two experiments, although the range of co-contraction in response 

to different target sizes was over a much smaller range than could be voluntarily elicited 

(an 11% versus 196% increase). SDN suggests high correlation between motor command 

magnitude and movement deviation, but this is true only for intrinsic parameters such as 

EMG and torque. For the parameters in the task space (Cartesian space), the correlations 

are low and at the final task level (endpoint error); furthermore, correlation was negative, 

meaning that SDN no longer holds. This demonstrates that SDN is not sufficient to 
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explain movement variance, but actually SDN is attenuated by impedance at the task 

level. Such reversed relationship between EMG variability and positional variability has 

also been observed when movement speed was increased (Darling and Cooke, 1987).  

 

Signal-dependent noise during movement 

 When subjects were asked to move with larger co-contraction levels, they 

increased the motor command signals of the flexor and extensor simultaneously. It has 

been suggested that the standard deviation of the neuromotor commands increases with 

its mean based on both motoneuronal firing studies (Clamman, 1969; Matthews, 1996) 

and surface rectified EMG signals (St-Amant et al., 1998; Clancy and Hogan, 1999) 

during static force tasks. Psychophysical studies of isometric force production have 

shown a strong relationship between mean force level and force variability as measured 

by standard deviation (Schmidt et al., 1979; Sherwood and Schmidt, 1980; Sherwood et 

al., 1988; Jones et al., 2002). Sherwood et al. (1988) also reported a strong relationship 

between mean force level and force variability in the elbow-joint movement task when 

different loads were added to a hand-held bar. 

 These previous behavioral studies investigated the change in force variability in 

isometric tasks (Schmidt et al., 1979; Sherwood and Schmidt, 1980; Jones et al., 2002) or 

moving conditions under normal co-contraction (Sherwood et al., 1988). The current 

study is the first to examine the relationships between stiffness, EMG activity, torque, and 

position variabilities and end-point deviation and error during movements. Analysis of 

EMG variability demonstrated a strong linear relationship with the rectified EMG level 
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(Fig. 2). This is not a trivial mathematical result of rectifying an AC signal. For a 

stochastic variable x with zero mean and even probability distribution, there is generally 

no linear relationship between the standard deviation and mean of the rectified signal. If 

the distribution changes its shape with different motor command levels, not only the 

linear relationship but also the monotonically increasing relationship of the deviation as a 

function of mean may not hold. For an evenly distributed zero-mean random variable x,

the variance of the rectified signal is given as follows: V(|x|) = V(x) – E(|x|)2. From this, 

the observed linear relationship holds if and only if V(x) is proportional to E(|x|)2, which is 

not a generic property of the zero-mean even distribution. This condition is satisfied for 

well-known uniform, Gaussian and Laplacian distributions, where the predicted slopes 

are approximately 0.58, 0.76 and 1.00, respectively. That is, if either uniform, Gausssian, 

or Laplace distribution is maintained for different levels of motor commands, the linear 

relationship between the mean and the standard deviation is mathematically derived. For 

our data, the slope between EMG deviation and magnitude widely raged with a mean 

larger than that of Laplace distribution (Fig. 3), suggesting that the EMG signal is 

corrupted by larger noise when the mean level of the signal becomes large. Our results 

also suggest that movement EMG distributions ranged wider than those in a 

constant-force, constant-angle condition, which fell between Gaussian and Laplacian 

distributions (Clancy and Hogan, 1999). Furthermore, the deviation is measured as a root 

mean squared distance from the ensemble-averaged rectified trajectory, showing true 

variability in the non-stationary signal. This allows EMG variability to be measured 

during movement for the first time. Consequently, signal-dependent noise was confirmed 
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during single-joint movements. 

 

Negative correlation of end-point error with stiffness 

Analysis of torque variability in the voluntary co-contraction experiment (Figs. 10D 

and 11A) showed that it increased with stiffness but with a weaker correlation than EMG 

variability. The positional variability averaged over the movement duration also 

increased significantly with IMCJ, but with an even weaker correlation (Figs. 10E and 

11A). In stark contrast, the final end-point error was significantly larger for the lowest 

co-contraction level than for the medium or high level (Figs. 10G and 11A). For the 

higher accuracy requirements of the target-size experiment, subjects chose a higher IMCJ 

level and achieved a lower end-point deviation (Fig. 7). Therefore, subjects exploited the 

relationship between stiffness and accuracy as the task demands changed.  

Although these findings seem counter-intuitive because higher stiffness involves 

larger motor commands, resulting in larger signal-dependent noise, they can be 

reconciled within the extended TOPS framework as will be explained later. 

Co-contraction has two effects within this model. First, it increases the noise produced by 

the actuators; although some of the forces in co-contraction cancel each other out, the 

variabilities from both agonist and antagonist are additive. Second, it changes the 

impedance of the limb. The impedance determines how the noise plays through the motor 

apparatus into the end-point error. Figure 11 most markedly demonstrates this effect of 

decreased and reversed correlation with IMCJ as the signal is transformed from EMG 

activity to torque, to position, to end-point variability, and finally to end-point error. 
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Decreased end-point error under higher co-contraction might be explained by two 

control mechanisms. One is the impedance control that utilizes the muscle’s intrinsic 

spring properties to realize a desired trajectory or end point in negative feedback control 

(Hogan, 1985; Burdet et al., 2001; Osu et al., 2002; Franklin et al., 2003). When muscle 

stiffness is increased by feedforward and predictive co-contraction, the increased 

feedback gains bring higher accuracy. The achievement of the desired trajectory and 

end-point is suggested because the end-point error decreased while the end-point 

deviation showed no definite trend as IMCJ increased in the co-contraction control 

experiment (Figs. 10F and G). Furthermore, in the target size experiment, the positional 

deviation decreased with higher stiffness (small target size) only in the late stage of 

movement (Fig. 5G), corresponding to the larger EMG activity and IMCJ in only the 

latter half of movement duration (Figs. 5A and B). A second possible control mechanism 

is the optimal feedback control proposed by Todorov and Jordan (2002), where time 

variant feedback gains are optimally selected based on neural feedback computations 

rather than muscle co-contraction. This computational theory seems to suggest larger 

torque variability for higher gains of neural feedback loops, which seems at odds with our 

results showing higher stiffness and accuracy with little change in torque variability (Figs. 

7D and F). Therefore, we may conclude that co-contraction leads to a trade-off between 

increased noise and reduced consequences due to the changed impedance. In our 

experiment, the increased variability of position seen during movement can be interpreted 

as the effects of increased SDN, whereas the reduced final error may be due to the 
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impedance change, which reduces variability.  

In the co-contracted state, the limb is clearly more stable against external noise or 

perturbations. However, because there was no explicit external perturbation in the current 

experiments it is not appropriate to ascribe the observed reduction of final task error to the 

rejection of external perturbation. One possible explanation is other uncontrolled internal 

processes that can have an effect on final accuracy, such as for example an increase in the 

overall level of attention, were triggered by the increase of co-contraction. That is, 

accuracy and impedance are independently regulated and subject generated higher levels 

of co-contraction while producing less variable feedforward commands. Another possible 

explanation is that at some level of co-contraction the limb may also be more stable 

against internally generated noise. How the impedance could reduce the internally 

generated noise is an open question because the reference trajectory, or the equilibrium 

position itself, could be perturbed by internally generated noise. Assuming that muscle 

visco-elasticity changes according to muscle activation (Bizzi et al., 1984), the 

equilibrium position can be expressed as the difference of two antagonistic muscles’ 

activation divided by the summation of their activation (co-contraction), i.e. (uflex - 

uext)/(uflex + uext) (Hogan, 1984). When noise is added to one or both of the two 

antagonistic muscles, changes in the equilibrium position generated by the noise are 

smaller when the denominator, that is, the amount of co-contraction, is larger. Therefore, 

the effect of internally generated noise on the reference trajectory may possibly smaller 

when stiffness is larger. Thus, co-contraction could possibly be one of factors in reducing 

the effect of internally generated noise on the final endpoint variability. 



37 

 

Shorter movement duration with higher stiffness 

In the co-contraction control experiment, a significantly shorter kinematic movement 

duration was observed with larger co-contraction, although the required out-and-in 

movement duration was constant irrespective of the co-contraction level. In the 

target-size experiment, the same effect was observed, although it was much smaller and 

not significant. A shorter movement duration for higher accuracy is apparently contrary to 

Fitts’ law (Fitts, 1954; Hirayama et al., 1993) and to TOPS model, which predicts Fitts’ 

law (Harris and Wolpert, 1998). A shorter movement duration with higher stiffness may 

be interpreted as a consequence of the mechanical resonant frequency of the forearm link, 

which increases in proportion to the square root of the elbow stiffness. The shorter 

movement duration with the same movement amplitude leads to higher acceleration and 

larger EMG activity, but this effect is negligible compared with large differences in EMG 

levels. That is, movement duration change was only 1.48% and 7.52%, while stiffness 

increase was 11% and 196% in the target-size and co-contraction control experiments, 

respectively. Assuming that EMG linearly increases with muscle torque and stiffness, it is 

expected that joint torque, and thus the reciprocal component of EMG, change with the 

square of duration change. Although a higher-order relationship between EMG and 

duration might exist because of the nonlinearity between EMG and stiffness, the 

order-of-magnitude smaller change of movement duration compared with IMCJ increase 

suggests that IMCJ increase was not merely due to reciprocal activation caused by joint 

torque increase but mainly due to additional co-contraction. The movement trajectories 
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and torque profiles were very similar between different experimental conditions (see Figs. 

5C, D; Figs. 9C, D), and their differences were too small to explain differences in EMG 

activity and IMCJ changes. Because the kinematic and dynamic features of the 

movements are almost invariant across different experimental conditions, IMCJ could be 

regarded at least as a good relative measure for stiffness, as discussed in Materials and 

Methods. For similar movement trajectory, IMCJ has been demonstrated to linearly 

increase with stiffness (Osu et al., 2002). Thus, we conclude that the stiffness changes 

were caused by the different accuracy requirements and voluntary co-contraction.  

 

Stiffness control dependence on tasks 

The largest end-point errors were observed when subjects did not increase 

co-contraction above the normal level. Similarly, subjects could increase their accuracy in 

response to a smaller target by increasing co-contraction. Consequently, without the need 

for greater accuracy, subjects accepted worse performance but with lower stiffness. This 

contradicts the principle of TOPS and suggests that minimizing the end-point deviation or 

end-point error alone may not be the sole consideration for task optimization. There is an 

extra dimension to stiffness control, which increases accuracy but also leads to 

undesirable factors. For example, the CNS may adopt criteria such as minimization of 

fatigue (Dul et al., 1984), energy consumption (Alexander, 1997), commanded torque 

change (Nakano et al., 1999), or motor command change (Kawato, 1992) in combination 

with the maximization of task achievement. Miyamoto et al. (2002), and Nagata et al. 

(2002) demonstrated that the TOPS-α model, where a cost term in the motor command 
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magnitude multiplied by α is added to the task achievement term, gives better prediction 

of trajectories than the TOPS model for a large number of point-to-point movements. The 

TOPS-α model combines maximization of task achievement and minimization of motor 

command magnitude. The relative contribution of these two terms to the overall cost is 

determined by the coefficient α, which is the weighting constant for motor command 

magnitude. If α is zero, the TOPS-α model is the same as the TOPS model, which 

maximizes task achievement. If α is large, the motor command magnitude is reduced at 

the expense of performance. The TOPS-α model is consistent with the current results in 

the sense that without the need for the greatest accuracy, subjects accept worse 

performance but with lower stiffness, resulting in reducing motor command magnitude. 

Slightly different movement duration and velocity profiles for different co-contraction 

levels may also suggest that desired trajectories were computed taking into account the 

magnitude of stiffness.  

The results of our experiments suggest that the central nervous system somehow 

acquires the knowledge of the relationship between stiffness level and size of end-point 

deviation and error, allowing it to generate the stiffness necessary for difficult tasks. 

Furthermore, stiffness is reduced as long as the task demand is satisfied under skilled and 

natural movements. Optimal impedance control may be accomplished in order to 

generate the proper trajectory for the task requirements through a trade-off between the 

stiffness level and task achievement.    
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Generalization to multi-joint movements 

The required movements were unnatural, and most subjects never rotated only the 

elbow without friction or gravity. There were three major reasons for this experimental 

setting. First, by minimizing the gravity and frictional forces during the movements, we 

could reliably estimate dynamic torques from surface EMG recordings. This was 

important for stiffness estimation via IMCJ. Second, by avoiding the shoulder freedom, 

we did not need to record from many shoulder muscles, thus shortening the experimental 

duration and simplifying the IMCJ computation. Finally, and most importantly, the hand 

path was forced to be identical between trials and subjects, and movement variability 

could result only from changes in velocity profiles. This is very important because we 

wanted to examine the effect of stiffness control on movement accuracy while 

minimizing changes in trajectory shapes. For multi-joint movements, it is known that the 

hand paths themselves fluctuate between trials and change systematically between 

subjects. Laursen et al. (1998) and Gribble et al. (2003) examined multi-joint movements 

and measured muscle activation by EMG activity for different accuracy requirements. 

Although, unlike us, they did not estimate joint stiffness and did not examine voluntary 

co-contraction, they found qualitatively similar results for the effects of accuracy 

requirements on co-contraction. Thus, we expect that at least a part of our results could be 

extended to more natural movements. 
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Figure Legends 

 

Fig. 1 (A) Experimental setup and CRT display patterns for changed target-size 

experiment (B) and voluntary co-contraction control experiment (C). The two arm 

positions shown in (A) indicate either the start or end position depending on extension 

or flexion movements. The CRT display patterns of (B) and (C) show extension 

movement. In the EMG level display of (C), the two extensor-muscle activities are 

shown on the right and the two flexor-muscle activities are shown on the left by the x 

marks. 

 

Fig. 2 EMG deviation at each time point plotted against EMG magnitude at that time 

point for a typical subject during voluntary co-contraction experiment. Green, red, 

and blue dots denote high, medium, and low co-contraction conditions, respectively. 

Upper four panels are plots for extension movements and lower four are those for 

flexion movements. Middle four panels (cyan background) are plots when muscles 

are working as agonists. The other four panels (magenta background) are plots when 

muscles are working as antagonists.  

 

Fig. 3 Histograms of the slopes between EMG magnitude and EMG deviation estimated 

for each muscle of each subject. Upper two panels are histograms of target-size 

experiments and lower two are those of co-contraction experiments. Vertical lines 

denote slopes of uniform, Gaussian, and Laplace distributions. 

 

Fig. 4 Results of a typical subject for the target-size experiment for extension movements. 

The results for large, medium and small target sizes are shown in the left, middle, and 

right columns, respectively. (A) shows the hand paths and end-point distributions. (B), 

(C) and (E) show velocity profiles, torque profiles, and stiffness profiles, respectively, 

as a function of time for 40 trials shown by thin gray curves. Ensemble-averaged time 

courses are indicated by solid colored curves. (D) shows the average EMG time 

courses of the four muscles. Ensemble averaging equations for C to E are given in 

Materials and Methods. 

 

Fig. 5 Ensemble-averaged time courses across all subjects and all trials classified by 
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target size shown by three colors: blue for large, red for medium, and green for small 

target size. (A), (B), (C), and (D) show the summed EMG activity over the four 

muscles, stiffness, torque, and velocity. (E), (F), and (G) show the ensemble-averaged 

deviations across all subjects for the summed EMG activity, torque, and position, 

respectively. (H) shows a magnification of (G) around the end of movement. The data 

from extension (upper panel) and flexion (lower panel) are shown separately. 

 

Fig. 6 RMS EMG of each muscle for each subject and movement direction against target 

size. Large, Medium, and Small indicate large, medium and small target sizes, 

respectively. The open circles indicate flexion movements, and the crosses extension 

movements. The p-values in each panel denote results of repeated measures ANOVA 

among target sizes (F(2,16) = 6.98 for elbow flexor, F(2,16) = 10.04 for biarticular 

flexor, F(2,16) = 12.52 for elbow extensor, F(2,16) = 6.74 for biarticular extensor). 

The horizontal bars denote significant comparison in post-hoc test (Tukey’s HSD test; 

P < 0.05). 

Fig. 7 Means and standard deviations (vertical bars) of six indices across all subjects for 

each target size. Large, Medium, and Small indicate large, medium and small target 

sizes, respectively. The gray lines denote extension data, and the black lines denote 

flexion data. The horizontal lines indicate significant comparisons. An interaction 

between target size and movement direction was significant for all indices except 

end-point deviation (P < 0.01). A and B show the means and standard deviations 

across subjects for the summed EMG activity and stiffness, respectively, which were 

time-averaged over the entire movement duration. C, D, and E show the means and 

standard deviations of the deviations that were time-averaged over the entire 

movement duration for EMG activity, torque, and position, respectively. F shows the 

mean and standard deviation of the end-point deviation. See Materials and Methods 

for the equations used to calculate the time-averaged deviations in C to E. 

 

Fig. 8 Results of the same subject shown in Fig. 4 for the voluntary co-contraction control 

experiment for extension movements. The results for the normal, medium and high 

levels of co-contraction are shown in the left, middle, and right columns, respectively. 

The format is similar to Fig. 4. (A) shows the hand paths and end-point distributions. 
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(B), (C), and (E) show velocity profiles, torque profiles, and stiffness profiles, 

respectively, as a function of time for 40 trials, and ensemble-averaged time courses 

are indicated by solid colored curves. (D) shows the average EMG time courses of the 

four muscles. 

 

Fig. 9 Ensemble-averaged time courses across all subjects and all trials classified by 

co-contraction levels shown by three colors: blue for normal, red for medium, and 

green for high in a similar format to Fig. 5. (A), (B), (C), and (D) show the summed 

EMG activity over the four muscles, stiffness, torque, and velocity. (E), (F), and (G) 

show the ensemble-averaged deviations across all subjects for the summed EMG 

activity, torque, and position, respectively. (H) shows a magnification of (G) around 

the end of movement. The data from extension (upper panel) and flexion (lower 

panel) are shown separately. 

 

Fig. 10 Means and standard deviations (vertical bars) of six indices across all subjects for 

each co-contraction level in a similar format to Fig. 7. Norm, Med and High indicate 

normal, medium and high co-contraction levels, respectively. The gray lines denote 

extension, and the black lines denote flexion data. The horizontal lines indicate 

significant comparisons. An interaction between co-contraction level and movement 

direction was significant for summed EMG, EMG, torque and position deviation (P <

0.01). A and B show the summed EMG activity and stiffness, respectively, which 

were time-averaged over the entire movement duration. C, D, and E show means and 

standard deviations of the deviations that were time averaged over the entire 

movement duration for EMG activity, torque, and position, respectively. F shows the 

mean and standard deviation of the end-point deviation. G shows the mean and 

standard deviation of the end-point error. 

 

Fig. 11 Plots of correlation coefficients between the stiffness and variabilities of five 

quantities for all subjects. A is for the voluntary co-contraction control experiment 

and B is for the target-size experiment. The circles show extension coefficients and 

the squares show flexion coefficients. Coefficients from the same subject are 

connected by a thin line. The bold line with asterisks shows the correlation 

coefficients that were calculated from all trials of all subjects for both flexion and 
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extension data. The EMG deviation (leftmost) shows the correlation coefficients 

between EMG activity and EMG variability. The torque deviation (second from left) 

shows the correlation coefficients between stiffness and torque variability. The 

position deviation (middle) shows the correlation coefficients between stiffness and 

position variability. The end-point deviation (second from right) shows the 

correlation coefficients between stiffness and end-point deviation. The end-point 

error (rightmost) shows the correlation coefficients between stiffness and end-point 

error. The dark shaded regions show the range of statistical insignificance, outside of 

which the correlation coefficients computed from all trials of all subjects are 

statistically significantly different from zero. The light shaded region is the 

insignificance range for an individual subject. 
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