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Abstract

In previous research, criteria based on optimal theories were examined to explain trajectory features in time and space in multi joint arm

movement. Four criteria have been proposed. They were the minimum hand jerk criterion (by which a trajectory is planned in an extrinsic-

kinematic space), the minimum angle jerk criterion (which is planned in an intrinsic-kinematic space), the minimum torque change criterion

(where control objects are joint links; it is planned in an intrinsic-dynamic-mechanical space), and the minimum commanded torque change

criterion (which is planned in an intrinsic space considering the arm and muscle dynamics). Which of these is proper as a criterion for

trajectory planning in the central nervous system has been investigated by comparing predicted trajectories based on these criteria with

previously measured trajectories. Optimal trajectories based on the two former criteria can be calculated analytically. In contrast, optimal

trajectories based on the minimum commanded torque change criterion are dif®cult to be calculated, even with numerical methods. In some

cases, they can be computed by a Newton-like method or a steepest descent method combined with a penalty method. However, for a realistic

physical parameter range, the former becomes unstable quite often and the latter is unreliable about the optimality of the obtained solution.

In this paper, we propose a new method to stably calculate optimal trajectories based on the minimum commanded torque change criterion.

The method can obtain trajectories satisfying Euler±Poisson equations with a suf®ciently high accuracy. In the method, a joint angle

trajectory, which satis®es the boundary conditions strictly, is expressed by using orthogonal polynomials. The coef®cients of the orthogonal

polynomials are estimated by using a linear iterative calculation so as to satisfy the Euler±Poisson equations with a suf®ciently high

accuracy. In numerical experiments, we show that the optimal solution can be computed in a wide work space and can also be obtained

in a short time compared with the previous methods.

Finally, we perform supplementary examinations of the experiments by Nakano, Imamizu, Osu, Uno, Gomi, Yoshioka et al. (1999).

Estimation of dynamic joint torques and trajectory formation from surface electromyography signals using a neural network model.

Biological Cybernetics, 73, 291±300. Their experiments showed that the measured trajectory is the closest to the minimum commanded

torque change trajectory by statistical examination of many point-to-point trajectories over a wide range in a horizontal and sagittal work

space. We recalculated the minimum commanded torque change trajectory using the proposed method, and performed the same examina-

tions as previous investigations. As a result, it could be recon®rmed that the measured trajectory is closest to the minimum commanded

torque change trajectory previously reported. q 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The following two characteristics have been well demon-

strated about the feature of a point-to-point human arm move-

ment on a plane (Abend, Bizzi, & Morasso, 1982). (1) The path

is a roughly straight line, but is slightly curved. (2) The velo-

city pro®le is bell shaped with a single peak. Several models

have been proposed to explain these features (Bizzi, Accor-

nero, Chapple, & Hogan, 1984; Flash & Hogan, 1985;

Nakano, Imamizu, Osu, Uno, Gomi, Yoshioka et al., 1999;

Rosenbaum, Loukopoulos, Meulenbroek, Vaughan, & Engel-

brecht, 1995; Uno, Kawato, & Suzuki, 1989). In particular, the

following criteria for trajectory planning based on optimal

principles have been proposed.

The minimum hand jerk criterion (Flash & Hogan, 1985)
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is planned in an extrinsic-kinematic space, the minimum

angle jerk criterion is planned in an intrinsic-kinematic

space (Rosenbaum et al., 1995), the minimum torque

change criterion (Uno et al., 1989), where control objects

are joint links, is planned in an intrinsic-dynamic-mechan-

ical space, and the minimum commanded torque change

criterion (Nakano et al., 1999) is planned in an intrinsic

space considering the arm and muscle dynamics and using

representations for motor commands controlling the muscle

tensions. The former two criteria are planned in a kinematic

space, and the latter two criteria are models that depend on

the dynamics of the arm. The ®nal target in this paper is to

discuss which of these trajectory planning criteria based on

optimal principles is appropriate as a criterion for trajectory

planning in the central nervous system.

Incidentally, analytical solutions for the minimum hand

jerk criterion and the minimum angle jerk criterion can be

calculated easily. However, the latter two models, which

smoothen the change of the torque or the commanded

torque, must be solved under several constraints with the

nonlinear dynamics and boundary conditions at the starting

and ®nal points. That is, we have to solve a nonlinear, opti-

mization problem.

In general, it is quite dif®cult to obtain an optimal solu-

tion. Nakano et al. (1999); Sakuraba, Osu, Nakano, Wada,

and Kawato (2000) reported that the trajectory predicted by

the minimum commanded torque change criterion is the

trajectory closest to a human trajectory among trajectories

predicted by the above criteria. However, it has been very

dif®cult to establish a robust method for obtaining an opti-

mal trajectory based on the minimum commanded torque

change criterion at various starting points, ®nal points, and

dynamic parameters. The optimal trajectory can be obtained

by the Newton-like method (Uno et al., 1989), and the stee-

pest descent method (Nakano et al., 1999). The Newton-like

method is an algorithm to guarantee the local optimality of

the converged trajectory mathematically; however, the algo-

rithm often becomes unstable according to the parameter

value of the dynamics such as the viscosity, and then,

often diverges. The algorithm also occasionally diverges

according to the positions of the starting and ®nal points.

On the other hand, the optimal solution can be stable and

computed comparatively more easily using the steepest

descent method. However, the optimality of the solution

cannot be guaranteed. Because it was dif®cult for Nakano

et al. (1999) to calculate an optimal trajectory of the mini-

mum commanded torque change, comparisons were made

on quasi-optimal trajectories based on the minimum

commanded torque change obtained using the steepest

descent method and measured trajectories.

Calculating the optimal trajectory is necessary and

indispensable for explaining human arm movements by

a mathematical model. Therefore, the need is high for

an algorithm that can calculate the optimal trajectory

accurately and without fail based on the minimum

commanded torque change criterion, regardless of the

positions of the starting and ®nal points or the value of

the dynamic parameter.

In this paper, ®rst of all, we propose a trajectory calcula-

tion method based on the minimum commanded torque

change criterion, which satis®es Euler±Poisson equations

with a suf®ciently high accuracy. These Euler±Poisson

equations, which are derived from the functional optimal

problem, provide the necessary condition for obtaining the

optimal trajectory. In the proposed method, the joint angle

trajectory is expressed by a system of orthogonal polyno-

mials for time, and each coef®cient of the orthogonal poly-

nomials is estimated by using a linear, iterative operation to

satisfy the Euler±Poisson equations as much as possible.

We show the numerical experiment results of the minimum

commanded torque change trajectory generation for a two-

joint arm on two planes (the horizontal and sagittal planes)

and also point out that the optimal trajectory, which satis®es

the Euler±Poisson equations with a suf®ciently high accu-

racy, can be obtained in a short time, regardless of the

positions of the starting and ®nal points or the value of

the dynamic parameter. Finally, we discuss the adequacy

of the trajectory planning criterion. We examine four trajec-

tory planning criteria in multi joint reaching movements,

which can explain the universal features in arm trajectories

well, as mentioned above, quantitatively and statistically

using many movement trajectories measured on various

and not local spaces (Nakano et al.,1999).

2. Optimal criteria for trajectory planning and
calculation algorithm

2.1. Minimum hand jerk criterion

With the minimum hand jerk criterion (Flash & Hogan,

1985) a trajectory is planned according to the arm position

(x, y) in an extrinsic-kinematic space given from vision

independently of the musculoskeletal dynamics. The trajec-

tory is planned so as to minimize the time integral of jerk

(three times differentiation of the hand position with respect

to time). The objective function is given as follows:

CJ � 1

2

Ztf

0

d3x

dt3

 !2

1
d3y

dt3

 !2( )
dt �1�

Here, tf shows the duration.

In a point-to-point movement, the trajectory predicted by

the criterion is a straight line trajectory in the Cartesian

coordinate. The tangential velocity is a bell shape with a

single peak. Flash and Hogan (1985) claimed that the mini-

mum hand jerk criterion can reproduce a trajectory corre-

sponding well with movement data from human subjects.

An attractive point is that the analytical optimal trajectory,

which satis®es the minimum hand jerk trajectory, can be

obtained easily.
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Here, xs, ys and xf, yf correspond to the position of the

starting point and the position of the ®nal point, respec-

tively.

2.2. Minimum angle jerk criterion

A trajectory based on the minimum angle jerk criterion is

planned so as to minimize the change of the angle accelera-

tion. That is, the object function of the minimum angle jerk

criterion is expressed by minimizing the integration of the

jerk over the motion duration, as shown in Eq. (4):

CAJ � 1

2

Ztf

0

X2

i�1

d3ui

dt3

 !2

dt �4�

u i shows the joint angle of joint i here. An analytical solu-

tion of the criterion can be easily obtained in the same

manner as the minimum hand jerk model. The minimum

angle jerk trajectory is expressed as the following equations,

which are the ®fth spline functions.

uAJ
i �t� � us

i 1 �us
i 2 uf

i � 210
t

tf

 !3

115
t

tf

 !4

26
t

tf

 !5 !

�0 # t # tf �
�5�

Here, us
i and uf

i show the joint angle at the starting point and

the ®nal point of joint i, respectively. The trajectory

predicted by the criterion is independent of the in¯uence

of the arm dynamics and the motion duration, except the

arm length. The point-to-point movement trajectory planned

by the criterion is a straight path in the joint space. The

trajectory transformed in the Cartesian coordinate is gradu-

ally curved according to the arm position.

2.3. Minimum torque change criterion

The minimum torque change trajectory is planned so that

the change of torque t generated by each joint becomes the

smallest. The object function is given by the following

equation:

CTC � 1

2

Ztf

0

X2

i�1

dti

dt

� �2

dt �6�

t i shows the torque generated by joint i. The minimum

torque change criterion (Uno et al., 1989) depends on the

arm dynamics. The minimum torque change criterion can

reproduce the gradually curved trajectory unable to be

explained by the minimum hand jerk criterion. Moreover,

movements that pass via points and movements to which an

external force is applied can be reproduced. The torque is

calculated from an equation of two link manipulators (Eq.

(7)).

t1 � {I1 1 I2 1 2M2L1S2cosu2 1 M2�L1�2} �u 1 1 �I2

1 M2L1S2cosu2� �u 2 2 M2L1S2�2 _u 1 1 _u 2� _u 2sinu2

1 B11
_u 1 1 B12

_u 2 1 g{�M1S1 1 M2L1�sinu1

1 M2S2sin�u1 1 u2�}

t2 � �I2 1 M2L1S2cosu2� �u 1 1 I2
�u 2 1 M2L1S2� _u 1�2sinu2

1 B22
_u 2 1 B21

_u 1 1 gM2S2sin�u1 1 u2�
�7�

Here, t 1 and u 1 show the torque and the joint angle of

the shoulder, and t 2 and u 2 show the torque and joint

angle of the elbow, respectively. Ii, Mi, Li, and Si, show

the inertia moment surroundings of link i (i� 1, 2),

mass, arm length, and the distance from the position

of the joint to the position of the center of the gravity.

The three-dimensional shape of a male's arm was

measured by a Cyberware Laser Range Scanner. We

calculated the arm as a homogeneous material with a

speci®c gravity of 1.0 and computed its mass, center of

mass, and moment of inertia from its volume. The arm

parameters for each subject were calculated using the

ratio of the arm length based on the measured data. Bij

shows the viscosity coef®cient expressing the in¯uence

of the angular velocity of joint j on the torque of joint i.

Links 1 and 2 correspond to the upper arm and the

forearm. Moreover, g is the acceleration of gravity.

The term concerning g shows the force supporting the

arm. Therefore, g is set to 0 for movement in the hori-

zontal plane. Incidentally, in the minimum torque

change model proposed by Uno et al. (1989), only the

link dynamics is regarded as the controlled object.

The minimum torque change trajectory is extremely

sensitive to the value of the viscosity. Most of the viscosity

measured around a joint is ascribed to a biochemical and

mechanical reaction process within the muscle when it

receives impulses and generates tension, which is not

ascribed to a passive property of the joint (Akazawa,

1994). Considering the viscosity in calculating the torque

means that both the link dynamics and muscle are regarded

as controlled objects. It is not appropriate to use a non-zero

viscous value to calculate the torque because the literal

minimum torque change model takes the actual torque

around the joint as an object for optimization (Flash,

1990). Therefore, the actual torque with zero viscosity

Bij� 0 is calculated from the dynamics equation of a two-

link manipulation.
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2.4. Minimum commanded torque change criterion

Even if the hand position is determined in the extrinsic

coordinates, the joint angles or the muscle lengths cannot

be uniquely determined because of redundant degrees of

freedom. When a desired trajectory is determined in the

joint angle coordinate, the actual torques around the joints

can be calculated by an inverse dynamics equation.

However, there are also an in®nite number of possible

combinations of agonist and antagonist muscle tensions

that can generate the same torques. The degrees of free-

dom of a -motoneurons, which innervate each muscle, are

higher than those of the muscles, and cortical motor

neurons may have higher degrees of freedom than a -

motoneurons. Even if the time pro®les of muscle tensions

are speci®ed, the ®ring rates of the cortex or spinal cord

neurons cannot be uniquely determined. Regardless of

these indeterminacies, the actual hand trajectories show

common invariant characteristics, and electromyographic

(EMG) signals appear in typical triphasic patterns. These

observations suggest that the brain solves these ill-posed

problems based on some principles.

The minimum motor command change model (Kawato,

1992, 1996) has been proposed for trajectory planning in an

intrinsic-dynamic-neural space. The minimum angle jerk

criterion and the minimum torque change criterion can be

calculated from a comparatively easy physical parameter.

Because the minimum motor command change model can

conceptualize signals at the a -motoneuron or cortical moto-

neuron level, all indeterminacies can be constrained at each

level. Although an attempt has been made to estimate the

motor commands at the muscle level (Koike & Kawato,

1995), it is extremely dif®cult to estimate the motor

commands of the spinal cord or cortex by modeling the

information processing from a central system to a peripheral

system.

A quantitative model, not a conceptual model, is

needed to actually compute an optimal trajectory. There-

fore, ®rst, a minimum commanded torque change model

that approximates the minimum motor command change

model and has computability is proposed, while posi-

tively appreciating the assumption of non-zero viscosity

by Uno et al. (1989). In the literal minimum torque

change model, only the link dynamics is regarded as

the controlled object, whereas the minimum commanded

torque change model, both the link dynamics and

muscles are regarded as controlled objects. We employ

motor commands at the peripheral level, in other words,

we use signals controlling muscle tensions to model the

minimum commanded torque change criterion. In terms

of indeterminacy, however, the minimum commanded

torque change model solves problems at the same

level, that is, the torque level as the minimum torque

change model.

With the minimum commanded torque change criterion,

the link dynamics and the muscles are controlled, and the

trajectory is planned so as to minimize the time integral of

the square of the commanded torque change rate. The object

function is conceptually different though is given by an

expression identical to the minimum torque change criterion

as Eq. (8) shows,

CCTC � 1

2

Ztf

0

XN
i�1

dtc
i

dt

� �2

dt �8�

Here, tf indicates the movement time, and N shows the

number of joints. t c shows the commanded torque. Inciden-

tally, the commanded torque does not correspond to the

mechanical output torque. It is an approximated torque for

the motor commands. A point-to-point movement based on

the criterion is planned in consideration of the dynamics

parameters of the mass of the arm and the inertia movement,

etc., shown in Eq. (7). The feature of the trajectory gener-

ated by the criterion changes according to the start posture

and ®nal posture.

In this paper, Eq. (7) for a two-link, two-joint arm was

used for the calculation of the commanded torque. It was

extremely dif®cult to predict a trajectory satisfying the

criterion as well as the minimum torque change criterion.

In particular, because the value of the viscosity was not set

to 0 for the minimum commanded torque change criterion, it

became more dif®cult to obtain the solution by the Newton-

like method.

In our study, we use the following formula, which was

estimated from the actual torque and viscosity during static

force control (Gomi & Osu, 1998), to acquire viscous values

of diagonal components (B11, B22) and off-diagonal compo-

nents (B21, B12) for each trajectory. Here, for simplicity,

mean absolute torques (shoulder:tma
1 , elbow:tma

2 ) during

movement are used as the actual torques.

�B11;B12�� B21�;B22� � �0:63 1 0:095tma
1 ;

0:175 1 0:0375tma
2 ; 0:76 1 0:185tma

2 � Nm=�rad=s�
�9�

We propose a new method to calculate the minimum

commanded torque change trajectory, which is based

on the Euler±Poisson equation and can predict an opti-

mal trajectory robust for the change of the value of the

dynamics parameter such as a viscosity. Naturally, the

method can also be applied to the minimum torque

change criterion.

3. A prediction algorithm for trajectories based on the
minimum commanded torque change criterion using the
Euler±Poisson equation

3.1. Euler±Poisson equation

In this section, a calculation algorithm for trajectories

based on the minimum commanded torque change criterion

using the Euler±Poisson equation is described. Basically,

the algorithm calculates a trajectory that satis®es the

Y. Wada et al. / Neural Networks 14 (2001) 381±393384



Euler±Poisson equations with a high accuracy and the

boundary conditions strictly. The object function of the

minimum commanded torque change criterion (Eq. (8)) is

expressed as follows.

CCTC � 1

2

Ztf

0
F�t; u1; u2; _u 1; _u 2; �u 1; �u 2; u

�3�
1 ; u�3�2 �dt ! Min

�10�
Here, F � P2

i�1

ÿ
dtc

i =dt
�2
; u�3�1 and u�3�2 show the differential

coef®cient of the third order with respect to the time of u 1

and u 2, respectively. By the boundary conditions of the

starting point and the ®nal point (position, velocity, and

acceleration), the following Euler±Poisson equations for

the above optimal problem can be derived as a necessary

condition for an extreme value.

E1 � 2

2u1

F 2
d

dt

2

2 _u 1

F 1
d2

dt2

2

2 �u 1

F 2
d3

dt3

2

2u�3�1

F � 0

E2 � 2

2u2

F 2
d

dt

2

2 _u 2

F 1
d2

dt2

2

2 �u 2

F 2
d3

dt3

2

2u�3�2

F � 0

�11�
Therefore, u 1 and u 2, which satisfy these two Euler±Poisson

equations for every movement time, are the minimum

commanded torque change trajectory.

3.2. A system of orthogonal polynomials for expression of

the minimum commanded torque change trajectory

The minimum angle jerk trajectory is one of the good

approximations of the minimum commanded torque change

trajectory. Here, let us assume that the minimum

commanded torque change trajectory ui�t� (i� 1, 2) can

be expressed by the following equation.

ui�t� � uAJ
i �t�1 Dui�t� �12�

Here, uAJ
i �t� corresponds to the minimum angle jerk trajec-

tory, and Dui�t� is denoted as the difference between the

minimum commanded torque change trajectory and the

minimum angle jerk trajectory. The trajectory of Eq. (12)

must satisfy the following boundary conditions of the start-

ing position and ®nal position.

ui�0� � us
i ; _u i 0� � � �u i�0� � 0;

ut�tf � � uf
i ; _u i�tf � � �u i�tf � � 0 �i � 1; 2�

�13�

In the next section, we show concrete equations of the mini-

mum angle jerk trajectory and the second term on the right

side of Eq. (12).

3.2.1. A difference trajectory Dui�t�
uAJ

i �t� in Eq. (12) is the minimum angle jerk trajectory,

which satis®es the boundary conditions (Eq. (13)). There-

fore, Dui�t� should be a function that makes the boundary

conditions at the starting point and ®nal point all become 0.

We use the Jacobian polynomial (Szego, 1975) as the set of

orthogonal polynomials to express Dui�t� (see Appendix A).

The Jacobian polynomial can be represented as ~Qk�t� �
64t3�1 2 t�3 ~P�6;6�k �t�: We de®ne the difference trajectory

Dui�t� as the following equations, which are normalized to

0 # t # 1.

Dui�t� �
X

k

64aikt3�1 2 t�3 ~P�6;6�k �t� �14�

Dui�t� is composed of the summation of Jacobian orthogonal

polynomials; the boundary conditions of the position, velo-

city, and acceleration at the starting point and ®nal point all

satisfy 0. From the above, the minimum commanded torque

change trajectory ui�t� is given by Eq. (15).

ui�t� � us
i 1 �us

i 2 uf
i ��210t3 1 15t4 2 6t5�1 64t3�1

2 t�3
XK
k�0

aik
~P�6;6�k �t� �15�

Jacobian polynomials P�6;6�k11 �x� obtained by a recurrence

formula from the ®rst to the (k 1 1)th order are shown in

Appendix A.

3.3. An estimation algorithm of parameter aik

To estimate aik satisfying the Euler±Poisson equations

with a high accuracy, we propose the following two

innovations. (1) The left side of the Euler±Poisson

equation is expressed as a linear summation concerning

aik, and (2) the coef®cient aik is estimated using an

iterative calculation by the discretization of the move-

ment time.

3.3.1. A linear summation concerning parameter aik

Eq. (15) is substituted for Eq. (11), and this is arranged to

become a linear expression of aik such as Eq. (16).

E1�t; u1; u2; _u 1; _u 2;¼; u�3�1 ; u�3�2 �

�
X2

i�1

XK
k�0

1hik�t; u1; u2; _u 1; _u 2; �u 1; �u 2�aik

1 J1�t; u1; u2; _u 1; _u 2;¼; u�3�1 ; u�3�2 �

E2�t; u1; u2; _u 1; _u 2;¼; u�3�1 ; u�3�2 �

�
X2

i�1

XK
k�1

2hik�t; u1; u2; _u 1; _u 2; �u 1; �u 2�aik

1 J2�t; u1; u2; _u 1; _u 2;¼; u�3�1 ; u�3�2 � �16�
Eq. (16) is obtained according to the standard of the follow-

ing (A) and (B).

(A) Terms �1;A1;A2�´u�n�i

Here, [ ] u�n�i indicate product terms of the inside
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terms of [ ] and u�n�i . Refer to Table 1 for A1 and A2.

(B) �1;A2;A3�´�u�4�i ´ _u j; u
�4�
i ´� _u j�2; u�4�i ´ _u 1´ _u 2; u

�4�
i ´ �u j; u

�5�
i ´ _u j�

�i; j � 1; 2�
However, [ ].[ ] shows the product with each term of

[ ]. Refer to Table 1 for A2 and A3.

Here, J1 and J2 are composed of terms; Eq. (15) is not

substituted according to the standard, and �uAJ
i ��n� (n� 2,

¼, 6). The composition terms of 1hik, 2hik, J1 and J2 are

shown in Table 1.

3.3.2. A discretization of the movement time

Time t is dispersed to M divisions with equal intervals for

the normalized movement time �t0; t1; t2;¼; tm;¼; tM� �t0 �
0; tM � 1�: Here, if a parameter aik expressing an optimal

trajectory exists, the trajectory of Eq. (16) satis®es Eq. (11).

That is, Eq. (16) satis®es the following equation.

X2

i�1

XK
k�0

lhik�tm; u1m; u2m; _u 1m; _u 2m; �u 1m; �u 2m�aik

1Jl�tm; u1m; u2m; _u 1m; _u 2m;¼; u�3�1m; u
�3�
2m � 0 �l � 1; 2;

0 # m # M�
�17�

Here, the above equation is rearranged using lhikm �l

hik�tm;¼� and Jlm � Jl�tm;¼� as follows.

X2

i�1

XK
k�0

lhikmaik 1 Jlm � 0 �18�

Eq. (18) holds for all discretization time values. Then,

2(M 1 1) linear equations of aik are derived. These

equations are expressed as follows, in matrix form.

1h100
¼

1h2K0

..

.
] ..

.

1h10m
¼

1h2Km

..

.
] ..

.

1h10M
¼

1h2KM

2h100
¼

2h2Ko

..

.
] ..

.

2h10m
¼

2h2Km

..

.
] ..

.

2h10M
¼

2h2KM

266666666666666666666666666666664

377777777777777777777777777777775

a10

a11

..

.

a1K

a20

..

.

a2K

26666666666666666664

37777777777777777775

1

J10

..

.

J1m

..

.
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Table 1

Terms in 1hik, 2hik, J1, and J2

1hik, 2hik Sum of A1 terma

Sum of A2, B1, �A2;A3�´B1 terms

J1, J2 Sum of B2, �A1;A4�´B2 termsa

Sum of B3, �A2;A3�´B3 terms

A1 cos�u1�; cos�u1 1 u2�; cos2�u1�; cos2�u1 1 u2�; cos�u1�cos�u2�; cos�u1�cos�u1 1 u2�; cos�u2�cos�u1 1 u2�
A2 cos(u 2), cos2(u 2)

A3 sin(u 2), sin2(u 2), sin(u 2)cos(u 2)

A4 sin�u1�; sin�u1 1 u2�; sin�u1�cos�u1�; sin�u1�cos�u1 1 u2�; cos�u1�sin�u1 1 u2�; sin�u1�sin�u2�; sin�u1�cos�u2�; cos�u1�sin�u2�; sin�u2�sin�u1 1 u2�;
sin�u2�cos�u1 1 u2�; cos�u2�sin�u1 1 u2�; sin�u1 1 u2�cos�u1 1 u2�

B1 u�1�i ; u�1�2 ; �u�1�1 �2; �u�1�2 �2; u�1�1 u�1�2

B2 �u�1�1 �2; �u�1�2 �2; u�1�1 u�1�2 ; �u�1�1 �3; �u�1�2 �3; �u�1�1 �2u�1�2 ; u�1�1 �u�1�2 �2; �u�1�1 �4; �u�1�2 �4; �u�1�1 �3u�1�2 ; u�1�1 �u�1�2 �3; �u�1�1 �2�u�1�2 �2; �u�2�1 �2; u�2�2 �2; u�2�1 u�2�2 ; �u�1�1 �2u�2�1 ;

u�2�1 �u�1�2 �2; u�1�1 u�2�1 ; u�1�2 u�2�1 ; u�1�1 u�2�2 ; u�1�2 u�2�2 ; u�1�1 u�3�1 ; u�1�1 u�3�2 ; u�1�2 u�3�1 ; u�1�2 u�3�2 ; �u�2�1 �2u�2�2 ; u�2�1 �u�2�2 �2; u�1�1 u�1�2 u�2�1 ; u�1�1 u�1�2 u�2�2 ; �uiAJ��2�; �ui
AJ��3�;

�ui
AJ��4� �i � 1; 2�

B3 �u�1�2 �5; u�1�1 �u�1�2 �4; �u�1�1 �2u�1�2 �3; u�2�1 �u�1�2 �3; �u�1�2 �3u�2�2 ; �u�2�1 �2u�1�2 ; u�1�1 �u�2�2 �2; u�1�2 �u�2�2 �2; �u�1�1 �2u�3�1 ; �u�1�2 �2u�3�1 ; �u�1�1 �2u�3�2 ; �u�1�2 �2u�3�2 ; u�2�1 u�3�1 ; u�2�2 u�3�1 ;

u�2�1 u�3�2 ; u�2�2 u�3�2 ; u�1�1 u�2�1 u�2�2 ; u�1�2 u�2�1 u�2�2 ; u�1�1 u�1�2 u�3�1 ; u�1�1 u�1�2 u�3�2 ; u�1�1 �u�1�2 �2u�2�1 ; �u�1�1 �2u�1�2 u�2�2 ; u�1�1 �u�1�2 �2u�2�2 ; �u�1�2 �6; u�1�1 �u�1�2 �5; �u�1�1 �4�u�1�2 �2;
�u�1�1 �2�u�1�2 �4; �u�1�1 �3�u�1�2 �3; u�2�1 �u�1�2 �4; �u�1�1 �4u�2�2 ; �u�1�2 �4u�2�2 ; �u�1�1 �2�u�2�1 �2; �u�1�2 �2�u�2�1 �2; �u�1�1 �2�u�2�2 �2; �u�1�2 �2�u�2�2 �2; �u�2�1 �3; �u�2�2 �3; �u�2�1 �2u�2�2 ;

u�2�1 �u�2�2 �2; �u�1�1 �3u�3�1 ; �u�1�2 �3u�3�1 ; �u�1�1 �3u�3�2 ; �u�1�2 �3u�3�2 ; �u�3�1 �2; �u�3�2 �2; u�3�1 u�3�2 ; �u�1�1 �3u�2�1 u�1�2 ; u�1�1 u�2�1 �u�1�2 �3; �u�1�1 �3u�1�2 u�2�2 ; u�1�1 �u�1�2 �3u�2�2 ;

�u�1�1 �2u�2�1 �u�1�2 �2; �u�1�1 �2�u�1�2 �2u�2�2 ; �u�1�1 �2u�2�1 u�2�2 ; �u�1�2 �2u�2�1 u�2�2 ; u�1�1 u�1�2 �u�2�1 �2; u�1�1 u�1�2 �u�2�2 �2; �u�1�1 �2u�1�2 u�3�1 ; u�1�1 �u�1�2 �2u�3�1 ; �u�1�1 �2u�1�2 u�3�2 ; u�1�1 �u�1�2 �2u�3�2 ;

u�1�1 u�2�1 u�3�1 ; u�2�1 u�3�1 u�1�2 ; u�1�1 u�3�1 u�2�2 ; u�1�1 u�2�1 u�3�2 ; u�3�1 u�1�2 u�2�2 ; u�1�1 u�2�2 u�3�2 ; u�2�1 u�1�2 u�3�2 ; u�1�2 u�2�2 u�3�2 ; u�1�1 u�1�2 u�2�1 u�2�2 ; �ui
AJ��4�; �ui

AJ��5�; �ui
AJ��6�; �ui

AJ��4�u�1�1 ;

�ui
AJ��4�u�1�2 ; �ui

AJ��4��ui
�1���2�; �ui

AJ��4��u�1�2 �2; �ui
AJ��4�u�1�1 u�1�1 ; �ui

AJ��5�u�1�1 ; �ui
AJ��5�u�1�2 ; �i � 1; 2�

a For the sagittal plane.



Therefore,

a � 2H#J �19�
Here, H# indicates a pseudo inverse matrix of H. aik is

estimated by an iterative calculation of the following

method.

1. The initial value of parameter aik is set to 0, and

joint angle trajectory u i is calculated from Eq. (15).

2. 1hikm;2 hikm; J1m; and J2m are calculated at every time

tm (m� 0, 1, ¼, M).

3. aik is obtained from Eq. (19).

4. A new joint angle trajectory u i is calculated from Eq.

(15) using aik computed in step 3.

Steps 2±4 are repeated until aik converges. In other

words, in Eq. (19), let d (d� 0, 1, 2, ¼) denote an

index of the iterative calculation; the iterative calcula-

tion can be shown by the following equation.

ad11 � 2H�ad�#J�ad� �20�

4. Numerical experiments of point-to-point movement
on the horizontal and sagittal planes

The formation of minimum commanded torque change

trajectories with the same starting point, ®nal point, and

motion duration as measured trajectories by Nakano et al.

(1999) was carried out. The error of the Euler±Poisson

equation was de®ned by the maximum value of the absolute

value of the error, such as Eq. (21), to evaluate each

predicted trajectory.

max
0#tm#1

X2

i�1

uEp
i �tm�2 Ei�tm�u � uEumax �21�

Here, Ep
i �tm� shows the optimal value of Ei�tm�. It is clear

that Ep
i �t� � 0 (0 # t # 1) holds from Eq. (11). Whether the

trajectory satis®es the Euler±Poisson equation can be

judged according to the error de®nition. One thousand two

hundred minimum commanded torque change trajectories

were generated and measured by Nakano et al. (1999). First,

the relationship between the number of parameters K and

the error uEumax was examined in the proposed method. The

value of K was changed (i.e. 30, 32, 34, ¼, 70). All of the

initial values of aik were set to 0.

Fig. 1 shows changes in error uEumax according to the

number of parameters K. The horizontal axis shows the

number of parameters K, and the vertical axis is uEumax

calculated by Eq. (21). A, B, C, and D correspond to the

four trajectories shown in Fig. 3. Though the error uEumax

decreases as K increases, it converges near K� 54. The

number of optimal parameters K differs according to the

trajectory. Therefore, in the following, we use the number

of parameters K that minimizes the error of uEumax for each

trajectory.

Fig. 2. indicates the convergence of error uEumax in 100

times iterative calculations. The horizontal axis shows the

iterative number of estimations of parameter aik and the

vertical axis shows uEumax calculated by Eq. (21). uEumax

for all trajectories converges to a small value below about

1029. It can therefore be said that the Euler±Poisson equa-

tions are satis®ed with a high accuracy at every movement

time of the trajectory. Moreover, the error clearly converges

in a small number of iterative calculations, that is, about 20

times. Consequently, optimal trajectories can be obtained by

the proposed method regardless of whether the trajectories

can be solved by the Newton-like method or not.

The minimum commanded torque change trajectories on

the horizontal plane obtained by the proposed method are

shown in Fig. 3. The Y-axis of (a) is forward of the body, and

the origin is the position of a shoulder. The optimal trajec-

tories shown by the thick line cannot be obtained by the

Newton-like method. Moreover, it can be understood that

the features of human arm movements, that is hand
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Fig. 1. Relationship between the number of parameters K and uEumax. A, B,

C, D: trajectories in Fig. 3.

Fig. 2. Convergence of uEumax. A, B, C, D: trajectories in Fig. 3.



trajectories, are not straight lines, but gradually curved, and

the velocity pro®les each have a single peak and are repro-

duced well.

Table 2 indicates values of the object function (integra-

tion of the second power of the commanded torque

change) for two trajectories solved by each method on

the horizontal plane and the sagittal plane. It can be

understood that the object function of the proposed

method is smaller than or equal to the other methods

for any case. Moreover, it can be con®rmed that the

proposed method can also obtain the converged trajectory

solution, which is unable to be calculated by the Newton-

like method.

To con®rm how the proposed method and the Newton-

like method satisfy the Euler±Poisson equations, E1 and E2

at every movement time were calculated.

Fig. 4 shows the absolute values of E1 and E2 at every

time point for the proposed method and the Newton-like

method. The horizontal axis indicates the normalized

time, and the vertical axis is the absolute values of E1 and

E2. It can be understood that the proposed method satis®es

the Euler±Poisson equations better than the Newton-like

method during the whole movement time.

5. Consideration

In experiments, we examined the validity of the minimum

hand jerk criterion, minimum angle jerk criterion, minimum

torque change criterion, and minimum commanded torque

change criterion by comparing actual trajectories with

trajectories predicted by these optimization criteria. For

movements within the horizontal and sagittal planes, the

minimum commanded torque change model was able to

reproduce the spatial characteristics of measured trajec-

tories. In this case, the magnitudes and directions of curva-

tures were better than those of the other three models. The

minimum torque change model could reproduce neither the

magnitudes nor the directions of curvatures. The minimum

hand jerk model, which always predicts straight paths,

showed a lack of correlation with the measured trajectories

regarding the whole deviations.1 Even though the minimum
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Fig. 3. Minimum commanded torque change trajectories calculated using the proposed method in the horizontal plane.

1 We investigated the trajectory curvatures quanti®ed as an area bounded

by a start-to-goal straight line and the hand path. This area was named the

whole deviation. The whole deviation concerns the direction in which a

trajectory had curved. If a trajectory had curved right relative to the vector

from the start to the target, the area was designated positive; on the other

hand, a trajectory that curved left was given a negative sign.



angle jerk model could explain the direction of the curva-

ture, it predicted trajectories with obviously excessive

curvatures (see Appendix B).

In previous studies, Hollerbach (1990); Osu, Uno, Koike,

and Kawato (1997) suggested that planning in the joint

space cannot explain a gently curved hand trajectory. As

shown in Table 3, the slopes relating whole deviations of

the minimum hand jerk and actual trajectories were zero

(the mean error the slope was 1 in both planes). For mini-

mum angle jerk trajectories, slopes were from 1.4 to 2.6 in

the horizontal plane and from 1.3 to 1.5 in the sagittal plane

(the mean error of the slope was 1 and 0.34, respectively).

Hence, it can be considered that the minimum angle jerk

model is quantitatively three times better than the minimum

hand jerk model in the sagittal plane. Although the mini-

mum angle jerk model has a qualitative weak point in

predicting trajectories that are too curved, it is quantitatively

a better model compared with the minimum hand jerk

model. Accordingly, we demonstrated that it is impossible

to completely reproduce actual data with trajectory planning

in the kinematic space. As Flash (1990) pointed out, we

con®rmed that literal minimum torque change trajectories,

computed without consideration of the viscosity, cannot

reproduce any actual trajectory. Moreover, by the analysis

of the trajectory, the velocity, and the acceleration and the

torque, it was shown that the minimum commanded torque

change criterion was able to explain the temporal features of

actual hand trajectories best among the criteria. It can there-

fore be said that the minimum commanded torque change

criterion is a better model than the other three criteria

because the movement of the entire workspace can be

explained in time and space. Moreover, the minimum

commanded torque change criterion most similarly

reproduced the feature of the measured trajectory in point-

to-point movements on the sagittal plane. The whole

deviations in minimum commanded torque change trajec-

tories on the horizontal plane and the sagittal plane shown in

Table 3 predict that the curvatures of the trajectories on both

planes have almost the same tendency. Therefore, results

such as a linear relation between the whole deviation of a

trajectory measured in a horizontal plane and the whole

deviation of a trajectory measured in a sagittal plane seem

appropriate for the minimum commanded torque change

criterion.
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Fig. 4. Absolute values of E1 and E2 (trajectory A in Fig. 3. O: Newton-like method; *: the proposed method.



6. Summary

It was shown that the proposed method has the following

advantages by numerical experiments. The trajectory

obtained by the proposed method is similar to the trajectory

of the mathematically guaranteed Newton-like method. An

optimal trajectory, which cannot be obtained by the

Newton-like method, is able to be calculated. Even if the

value of the viscosity, which is one reason that a converged

solution is unable to be obtained by the Newton-like

method, is greatly changed, it can be con®rmed that the

proposed method is able to obtain an optimal solution.

This was shown to obtain the converged solution in a very

short period of time compared with the previous method.

Though we searched for the most appropriate number of

parameters K in the paper, a value of around K� 60 is

suf®cient as shown in Fig. 1. An optimal solution can be

obtained by an iterative calculation of several ten times. The

proposed method is a general method for a nonlinear, opti-

mal problem. Therefore, the method can be applied to

various optimization problems. However, an important

remaining problem is to clarify the convergence conditions

of the method theoretically.

Finally, we performed supplementary examinations of

the experiments by Nakano et al. (1999). We recalculated

the minimum commanded torque change trajectory using

the proposed method; the same examinations as Nakano et

al. (1999) were performed. As a result, it was recon®rmed

that the measured trajectory was closest to the minimum

commanded torque change trajectory, like the result by

Nakano et al. (1999).
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Appendix A

A.1. Jacobian polynomial

A Jacobian polynomial (Szego, 1975) is as follows. In

general, there is family �Rkuk � 0, 1, 2, ¼) of polynomials

de®ned by sections a and b.

�Rk;Rl�w �
Zb

a
Rk�x�Rl�x�w�x�dx � 0 �however; k ± l�

�22�
Rk and Rl to which Eq. (22) is satis®ed are called an ortho-

gonalization polynomial system concerning weight w in

section a and in section b. This orthogonalization polyno-

mial is obtained by the third recurrence formula (Szego,

1975). In particular, the following weight w(x) is de®ned

by section (21, 1).

w�x� � �1 1 x�a�1 2 x�b �a;b . 21� �23�
Function P

�a;b�
k �x� �k � 0; 1;¼�; which is orthogonal

concerning Eq. (23), is a Jacobian polynomial. Here,

�P�a;b�k ;P
�a;b�
l �w �

Z1

21
P
�a;b�
k �x��w�x��1=2P

�a;b�
l �x��w�x��1=2dx

�24�
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Table 2

Values of the performance index (the time integral of the square of the

commanded torque change rate)

1 2a

Horizontal plane

The proposed method 33.4432 92.1030

Newton-like method 33.4432 ±

Steepest descent method 33.4619 92.1660

Sagittal plane

The proposed method 93.7844 40.3807

Newton-like method 93.7845 ±

Steepest descent method 93.8458 40.3932

a ±Shows that the method cannot calculate the optimal trajectory.

Table 3

Results of a t-test for measured whole deviations and simulated whole deviations. (r: correlation coef®cient; t: t values; df: degrees of freedom; *p , 0.05;

**p , 0.01; HJ: minimum hand jerk criterion; AJ: minimum angle jerk criterion; TC: minimum torque change criterion; CTC: minimum commanded torque

change criterion)

Subjects MM YS TT

Models r t df Slope r t df Slope r t df Slope

A Horizontal plane

HJ 0 ± ± 0 0 ± ± 0 0 ± ± 0

AJ 0.727 14.56** 189 1.933 0.680 12.62** 185 2.645 0.835 20.17** 177 1.440

TC 2 0.365 5.39** 189 2 0.943 2 0.298 4.25** 185 2 0.993 2 0.363 5.18** 177 2 0.618

CTC 0.798 18.18** 189 0.819 0.691 12.99** 185 1.302 0.654 11.50** 177 0.485

B Sagittal plane

HJ 0 ± ± 0 0 ± ± 0 0 ± ± 0

AJ 0.751 15.12** 177 1.487 0.733 14.20** 174 1.278 0.788 17.04** 177 1.265

TC 2 0.400 5.81** 177 2 0.485 2 0.322 4.49** 174 2 0.302 2 0.358 5.11** 177 2 0.375

CTC 0.777 16.44** 177 0.894 0.829 19.54** 174 0.900 0.771 16.12** 177 0.700
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Table 4

Results of Bonferroni's t-test for the mean squared errors of measured trajectories and simulated trajectories. Pairwise comparisons were carried out for four

models. t: t values; df: degrees of freedom; *p , 0.05; **p , 0.01; HJ: minimum hand jerk criterion; AJ: minimum angle jerk criterion; TC: minimum torque

change criterion; CTC: minimum commanded torque change criterion. The model of which the amount of mean squared errors was signi®cantly small is shown

to the right of the level of signi®cance)

Subjects MM YS TT

t df t df t df

A Horizontal plane

HJ±AJ Trajectory 9.35** 190 HJ 13.54** 186 HJ 3.25** 178 HJ

Velocity 12.02** 190 HJ 17.00** 186 HJ 6.42** 178 HJ

Acceleration 13.32** 190 HJ 17.50** 186 HJ 8.76** 178 HJ

Torque 2.78** 190 HJ 5.60** 186 HJ 0.83 178

HJ±TC Trajectory 11.80** 190 HJ 7.66** 186 HJ 10.28** 178 HJ

Velocity 12.60** 190 HJ 8.35** 186 HJ 10.67** 178 HJ

Acceleration 13.27** 190 HJ 8.83** 186 HJ 10.55** 178 HJ

Torque 1.09 190 2.87** 186 HJ 1.18 178

HJ±CTC Trajectory 4.07** 190 CTC 0.17 186 4.58** 178 CTC

Velocity 4.00** 190 CTC 0.93 186 5.66** 178 CTC

Acceleration 0.59 190 0.71 186 3.99** 178 CTC

Torque 5.16** 190 CTC 5.04** 186 CTC 5.09** 178 CTC

AJ±TC Trajectory 7.24** 190 AJ 0.75 186 8.30** 178 AJ

Velocity 6.06** 190 AJ 1.50 186 7.11** 178 AJ

Acceleration 4.81** 190 AJ 3.57** 186 TC 5.79** 178 AJ

Torque 5.08** 190 TC 10.66** 186 TC 2.78** 178 TC

AJ±CTC Trajectory 12.42** 190 CTC 14.22** 186 CTC 6.02** 178 CTC

Velocity 15.27** 190 CTC 17.60** 186 CTC 9.51** 178 CTC

Acceleration 14.67** 190 CTC 16.79** 186 CTC 10.45** 178 CTC

Torque 8.45** 190 CTC 12.53** 186 CTC 7.15** 178 CTC

TC±CTC Trajectory 14.00** 190 CTC 7.77** 186 CTC 13.12** 178 CTC

Velocity 14.84** 190 CTC 8.96** 186 CTC 13.80** 178 CTC

Acceleration 14.63** 190 CTC 9.13** 186 CTC 12.92** 178 CTC

Torque 12.80** 190 CTC 6.82** 186 CTC 12.54** 178 CTC

B Sagittal plane

HJ±AJ Trajectory 4.38** 178 HJ 2.67** 175 HJ 2.47** 178 HJ

Velocity 5.79** 178 HJ 3.80** 175 HJ 3.53** 178 HJ

Acceleration 6.28** 178 HJ 4.55** 175 HJ 3.98** 178 HJ

Torque 1.71 178 2.65** 175 HJ 0.52 178

HJ±TC Trajectory 6.71** 178 HJ 6.60** 175 HJ 6.38** 178 HJ

Velocity 6.80** 178 HJ 6.75** 175 HJ 6.60** 178 HJ

Acceleration 6.94** 178 HJ 6.93** 175 HJ 6.79** 178 HJ

Torque 1.16 178 1.55 175 0.35 178

HJ±CTC Trajectory 2.79** 178 CTC 3.60** 175 CTC 3.88** 178 CTC

Velocity 0.69 178 2.19* 175 CTC 3.00** 178 CTC

Acceleration 2.59* 178 HJ 0.57 175 0.66 178

Torque 1.68 178 1.34 175 3.47** 178 CTC

AJ±TC Trajectory 3.46** 178 AJ 3.57** 175 AJ 3.78** 178 AJ

Velocity 2.41* 178 AJ 2.94** 175 AJ 3.39** 178 AJ

Acceleration 1.68 178 2.52* 175 AJ 3.33** 178 AJ

Torque 0.68 178 1.63 175 0.20 178

AJ±CTC Trajectory 6.87** 178 CTC 5.83** 175 CTC 5.87** 178 CTC

Velocity 6.90** 178 CTC 5.98** 175 CTC 6.03** 178 CTC

Acceleration 5.26** 178 CTC 4.60** 175 CTC 4.50** 178 CTC

Torque 4.09** 178 CTC 3.88** 175 CTC 3.89** 178 CTC

TC±CTC Trajectory 7.89** 178 CTC 7.28** 175 CTC 7.89** 178 CTC

Velocity 6.93** 178 CTC 6.74** 175 CTC 7.43** 178 CTC

Acceleration 5.44** 178 CTC 5.51** 175 CTC 6.53** 178 CTC

Torque 5.43** 178 CTC 5.19** 175 CTC 6.31** 178 CTC



Consider the following equation.

w�x� � �1 1 x�6�1 2 x�6

� �1 1 x�6�1 2 x�6
n o1=2 �1 1 x�6�1 2 x�6

n o1=2

� �1 1 x�3�1 2 x�3�1 1 x�3�1 2 x�3 �25�
Qk�x� � �1 1 x�3�1 2 x�3P�6;6�k �x� is as follows at both ends

of section 1 and 21.

Qk�21� � Qk�1� � 0;
dQk�x�

dx

����
x�21
� dQk�x�

dx

����
x�1
� 0;

d2Qk�x�
dx2

�����
x�21

� d2Qk�x�
dx2

�����
x�1

� 0

�26�
Here, by the coordinate transformation of t� (x 1 1)/2,
~Qk�t� � 64t3�1 2 t�3 ~P�6;6�k �t� is obtained.

A.2. Jacobian polynomial of k 1 1

The following Jacobian polynomial of k 1 1 is given as

follows, where the coef®cient of the highest degree is

assumed as 1,

P�6;6�0 �x� � 1

P�6;6�1 � x

P�6;6�2 �x� � x2 2
1

15

..

. ..
.

P�6;6�k11 �x� � �x 2 ak�P�6;6�k �x�2 bkP�6;6�k21 �x�

ak � �xP�6;6�k �x�;P�6;6�k �x��w
�P�6;6�k �x�;P�6;6�k �x��w

�k � 0; 1; 2;¼�

bk � �P
�6;6�
k �x�;P�6;6�k �x��w

�P�6;6�k21 �x�;P�6;6�k21 �x��w
�k � 1; 2;¼�

However, P�6;6�21 �x� � 0:

Appendix B. Quantitative examination of the spatial and
time features of trajectories

We recalculated the minimum commanded torque change

trajectory using the proposed method, and performed the

same examinations as Nakano et al. (1999). Compared

with the actual trajectories, many of the minimum angle

jerk trajectories and minimum torque change trajectories

are largely curved towards the outside and inside of the

body, respectively. As a result of the analysis, we plotted

the correlations between the whole deviations of measured

and predicted trajectories. Table 3 summarizes the correla-

tion coef®cients, the results of a test on the correlations, and

the slopes of the regression lines of all of the subjects in the

horizontal and sagittal planes. All of the minimum hand jerk

trajectories were straight; this indicated that they were not

correlated with those of actual trajectories. The minimum

angle jerk trajectories were curved more than the actual

trajectories. Most of the whole deviations of the minimum

torque change trajectories had negative correlations to those

of actual trajectories, and the correlation coef®cients were

low. The whole deviations of the minimum commanded

torque change trajectories were smaller than, or approxi-

mately the same as, those of actual trajectories, and the

correlation coef®cients were high.

As a result of the second analysis, we carried out a t-

test for the MSEs of the position, velocity, acceleration,

and torque of all of the trajectories measured in both

planes. In 72 total comparisons between the minimum

commanded torque change model and the other three

models, and with the four characteristics, three subjects,

and two planes (3 £ 4 £ 3 £ 2), the MSEs of the mini-

mum commanded torque change model for 62 compar-

isons were smaller (signi®ciantly smaller, P , 0.05)

(Table 4). We roughly summarized that the minimum

commanded torque change model was the best one for

the MSEs.
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