
Quick Manual for Sparse Logistic Regression ToolBox ver1.2.1

By Okito Yamashita

Updated in Feb.2011

First version : Sep.2009

The Sparse Logistic Regression toolbox (SLR toolbox hereafter) is a suite of MATLAB

functions for solving classification problems. It provides a solution for binary or multi-class

classification problem. The unique feature is the weight parameters of the classifier are

learned in a sparse way. Thus the algorithm estimates the weight parameters while it

automatically finds important features. Due to this unique feature, SLR is applicable to a

high-dimensional classification problem where the number of samples is much less than

the number of features without suffering from „the overfitting problem‟ to some extent. In

addition, SLR releases users from the feature selection task that is usually very

time-consuming and requires experience. The algorithms are designed for problems of

which feature size is up to several thousand and of which sample size is up to several

thousand.


~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Installation 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

SLR toolbox is a suite of MATLAB functions and scripts. MATLAB, a commercial

engineering mathematics package, is required to use SLR toolbox. A couple of functions

require the optimization toolbox (see below). Codes in the toolbox were written for MATLAB

ver7.0.1 or later under LINUX and most functions has been test in MATLAB 7.0.1 and 7.5.

To get installed the toolbox, you just download and unzip the file (for example

SLR1.2alpha.zip) wherever you like. Some functions require “Optimization toolbox”. See

the section List of “Run-level functions” for more details.


~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Demonstration 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

This toolbox has two demonstrations in order to learn how the functions in SLR toolbox

work. So working with these demo functions ('demo_*.m') is a good starting point.

In two demo functions („demo_{binary, multiclass}_classification.m‟), you can see how to

use SLR toolbox functions for binary or multi-class classification problems with simulated

data sets as well as real experimental data (after feature computations). By changing a

variable „data‟ on the top of each code, you can switch dataset. Real experimental data

must be downloaded in addition to SLR toolbox functions. Please download

„TESTDATA.zip‟ and unzip it in the parallel level where you unzip SLR toolbox.


~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Functions in the toolbox 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Functions in SLR toolbox can be separated into 5 classes; “low-level functions”, “run-level

functions”, “demo functions”, “common functions”, “functions from others” (see figure 1).

 “Low-level functions” are the functions that execute learning classifier parameters.

Most functions take a pair of a label vector and a feature matrix as the inputs and

output estimated weight parameters.

 “Run-level functions” are the functions that implement whole procedure to solve a

classification problem (i.e. normalizing features  learning parameters  testing

learned classifier). Most functions take a pair of a label vector and a feature matrix as

inputs. Then classifier parameters are learned with training data and the learned

classifier is evaluated with test data. Learned parameters as well as some

performance measure will be output. There are seven functions for the binary

classification problem and six functions for the multi-class classification problem (see

below). It should be sufficient for most of users to know how to use these functions.

 “Demo functions” are for demonstration purpose. You can learn how functions in the

toolbox work using some examples. Please run these functions at first.

 “Common functions” are the functions that are commonly used in toolbox.

 “Functions from others” are the functions that are borrowed from EEGLAB toolbox and

MATLAB File exchange.

slr_learning.m

slr_learning_var2.m

rlr_learning.m

rlr_learning_var2.m

(linfun.m)

(linfun2.m)

smlr_learning.m

rmlr_learning.m

(linfunmlr.m)

biclsfy_*.m

demo_multiclass_classification.m

Low-level

function

Run-level

function
muclsfy_*.m

demo_binary_classification.m

demo_binary_classification_gaussian_rvm.m

demo_calculate_selection_count.m

Binary Classification Multi-class Classification

Demo

function

slr_learning.m

slr_learning_var2.m

rlr_learning.m

rlr_learning_var2.m

(linfun.m)

(linfun2.m)

smlr_learning.m

rmlr_learning.m

(linfunmlr.m)

biclsfy_*.m

demo_multiclass_classification.m

Low-level

function

Run-level

function
muclsfy_*.m

demo_binary_classification.m

demo_binary_classification_gaussian_rvm.m

demo_calculate_selection_count.m

Binary Classification Multi-class Classification

Demo

function

Common

functions

calc_SCval.m calc_label.m calc_percor.m gen_gm_data.m

gen_gmgm_data.mgen_simudata.m gen_sin_data.m

label2num.m normalize_feature.m

randmn.m separate_train_test.m slr_*.m

Functions

from others
finputcheck.m xyrefline.m

Figure 1: Functions in SLR toolbox


~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

List of “Run-level functions” 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

In “run-level functions”, each of seven functions of which name starts from „biclsfy_*‟

implements binary classifiers and each of six functions of which name starts from

„muclsfy_*‟ implements multi-class classifiers (see Table 1). Classifier in the row of „Sparse‟

has feature selection property while classifiers in the row of „Others‟ do not (for comparison

purpose).

Binary classifiers

Two sparse classifiers and three non-sparse classifiers are supported. Another two sparse

classifiers were implemented (2009/06).

 SLR-LAP: SLR with Laplace approximation. The marginal posterior-distribution of

weight parameters is approximated by multivariate Gaussian distribution (see ref.[1]

for details). This was developed for the research in ref.[1]. The optimization toolbox is

Table 1: Supported classifiers in SLR toolbox (Run-level functions)

 Binary classification Multi-class classification

Sparse SLR-LAP (biclsfy_slrlap.m)

SLR-VAR (biclsfy_slrvar.m)

L1-SLR-LAP (biclsfy_l1slrlap.m)

L1-SLR-C (biclsfy_l1slrc.m)

SMLR (muclsfy_smlr.m)

SLR-LAP-1vsR (muclsfy_slrlapovrm.m)

SLR-VAR-1vsR (muclsfy_slrvarovrm.m)

SLR-VAR-1vs1 (muclsfy_slrvarovo.m)

Others RLR-LAP (biclsfy_rlrlap.m)

RLR-VAR (biclsfy_rlrvar.m)

RVM (biclsfy_rvm.m)

RMLR (muclsfy_rmlr.m)

RLR-VAR-1vsR (muclsfy_rlrvarovrm.m)

SLR = Sparse Logistic Regression L1-SLR = L1-norm Sparse Logistic Regression

RLR = Regularized Logistic Regression RVM = Relevance Vector Machine

SMLR = Sparse Multinomial Logistic Regression RMLR = Regularized Multinomial Logistic Regression

LAP = with Laplace approximation VAR = with variational approximation

C = with component-wise update

1vsR = One-Versus-Rest 1vs1 = One-Versus-One

required („fminunc.m‟).

 SLR-VAR: SLR with variational approximation. The logistic function is approximated

by Gaussian distribution using a variational parameter (see ref.[2.3] or section 10.6 of

ref.[4]). The faster and the less memory.

 RLR-LAP: Regularized logistic regression with Laplace approximation. This is not

sparse algorithm. The regularization parameter is automatically determined by the

algorithm. The optimization toolbox is required („fminunc.m‟).

 RLR-VAR: Regularized logistic regression with variational approximation. This is not

sparse algorithm. The regularization parameter is automatically determined by the

algorithm.

 RVM: Relevance Vector Machine as proposed by Tipping (see ref.[5]). Bayesian

version of Support Vector Machine (SVM). The linear and Gaussian kernels are

supported. The Gaussian kernel RVM is only non-linear classifier supported in this

toolbox.

 L1-SLR-LAP: L1-norm based sparse logistic regression (see ref.[7]). This classifier

also provides sparse solution. The user must tune one parameter that determines

extent of sparsity. This program has not been debugged carefully yet. The optimization

toolbox is required („fminunc.m‟).

 L1-SLR-C: L1-norm based sparse logistic regression (see ref.[6]). This is fast and

requires less memory. This program has not been debugged carefully yet.

Two sparse classifiers, SLR-LAP and SLR-VAR, are derived from the identical probabilistic

model (see ref[1]) but different approximation to the posterior distribution. The difference

between RLR-LAP and RLR-VAR is as in the same way. Among two sparse classification

methods, I recommend SLR-VAR because it is faster and require less memory.

L1-SLR-LAP and L1-SLR-C are also sparse classifiers that is based on the different

probabilistic model form SLR-LAP(-VAR). I have not debugged these two codes carefully

yet.

Multi-class classifier

Four sparse classifiers and two non-sparse classifiers are supported so far.

 SMLR : Sparse Multinomial Logistic Regression (see ref.[1]). The multinomial

distribution is used for observation. In general, memory and time required are huge.

The optimization toolbox is required („fminunc.m‟).

 SLR-LAP-1vsR : Combination of SLR-LAP classifiers. One-versus-the rest scheme is

used. The optimization toolbox is required („fminunc.m‟).

 SLR-VAR-1vsR : Combination of SLR-VAR classifiers. One-versus-the rest scheme is

used. The faster computation and the less memory.

 RMLR : Regularized Multinomial Logistic Regression. One regularization parameter

common to all the classes is automatically estimated. The optimization toolbox is

required („fminunc.m‟).

 RLR-VAR-1vsR : Combination of SLR-VAR classifiers. One-versus-the rest schemes

is used. One regularization parameter per each class is automatically estimated.

 SLR-VAR-1vs1: Combination of SLR-VAR classifiers. One-versus-the one scheme is

used. The faster computation and the less memory.

SMLR is a true multinomial classifier that uses multinomial distribution as the likelihood

function. SLR-LAP-1vsR and SLR-VAR-1vsR are consisting of combination of sparse

binary classifiers (see one-versus-the-rest scheme in chapter4 of ref[4] for example). In this

release, one-versus-one scheme is also supported for SLR-VAR.

In theory, SMLR is the best classifier for multi-class problem since the model learning take

into account all the information among classes. But in my experience SLR-LAP-1vsR or

SLR-VAR-1vsR, SLR-VAR-1vs1 do perform as well as SMLR probably due to a small

number of training samples. Since SMLR requires rather large amount of memory and long

computation time whereas SLR-VAR-1vs1 requires less memory and computation time, I

recommend SLR-VAR-1vs1 for the first trial. It should be noted that the current

implementation of SLR-VAR-1vs1 assumes that each label has the same number of

samples (this assumption is used when combining multiple binary classifiers results.).


~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

How to use “Run-level functions”  

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

The details of “biclsfy_slrvar.m” are explained as an example of binary classifiers. You can

easily understand the structure and options of other run-level functions since they share

the same structure and the similar but slightly different options with “biclsfy_slrvar.m”.

The function has following format;

- Syntax

[ww, ix_eff_all, errTable_tr, errTable_te, parm, AXall,Ptr,Pte] =…

 biclsfy_slrvar(x_train, t_train, x_test, t_test, varargin).

- Example of Usage

[ww, ix_eff, errTable_tr, errTable_te] = biclsfy_slrvar(xtr, ttr, xte, tte, „nlearn‟, 300, „mean‟,

„displaytext‟, 0);

- Input variables

Name Brief explanation Type Details

x_train Training feature matrix N x D matrix Each row represents a feature vector

for a specific sample.

t_train Training label vector N x 1 vector The nth element represents the task

label for the nth row of training feature

matrix (i.e. feature vector of the nth

sample). Elements of this vector must

consist of any two integer values (e.g.

{0,1} or {1,2}). .

x_test Test feature matrix M x D matrix Same form as x_train

t_test Test label vector M x 1 vector Same form as t_train

* The variables N and M represents the number of training and test samples, respectively.

* The variable D represents the number of features.

- Optional Input variables

Name Brief explanation Type Details

scale_mode Mode of scaling when

normalizing the feature

matrices

String

[„each‟]

Each row represents a feature vector

for a specific sample.

mean_mode Mode of mean correction

when normalizing the feature

matrices

String

[„each‟]

The nth element represents the task

label for the nth row of training feature

matrix (i.e. feature vector of the nth

sample). Elements of this vector must

consist of any two integer values (e.g.

{0,1} or {1,2}). .

ax0 Initial relevance parameter Scalar [1] This value is set to all the relevance

parameters.

nlearn Number of iterations for

learning a classifier

Scalar[1000]

nstep Number of iterations for

displaying an intermediate

result during learning.

Scalar[100] Invalid when „displaytext‟ option is 0.

amax Maximum relevance

parameter

Scalar [10^8] Features of which relevance

parameters exceed this value are

removed from a classifier. This

threshold is important to avoid

computational instability.

usebias Flag for adding a constant

term or not

Boolean [1] If 1, the constant vector ones(N,1) is

added to the last column of feature

matrices.

norm_sep Flag for applying

normalization to training and

test data using different

scaling and mean correction

factors.

Boolean [0]

displaytext Flag for displaying a result

during learning iterations

Boolean [1]

invhessian Flag for using inverse of

Hessian matrix during

learning a classifier

Boolean [1] If 1, an inverse of Hessian matrix (size

D x D) is used in every learning

iteration. If 0, equivalent matrix

manipulations (size N x N) is used.

* The default values usually work reasonably well.

- Output variables

Name Brief explanation Type Details

ww Weight vector, D (or D+1) x

1 matrix

The last element corresponds to a

constant vector if usebias = 1 or the

size of a vector is D+1.

ix_eff_all Indicies of features selected 1 x 1 cell

errTable_tr Confusion matrix for training

data

2 x 2 matrix The 1
st
 row represents the number of

samples classified as 1 or 2 when the

true label is 1. The 2
nd

 row represents

the number of samples classified as 1

or 2 when the true label is 2.

errTable_te Confusion matrix for test 2 x 2 matrix Same form as errTable_tr

data

parm Parameter struct struct

Axall History of relevance vector

updates

 x D vector

Ptr Probabilistic output of

training data

N x 2 vector The 1
st
 and 2

nd
 column represent the

probability of training samples

classified as label 1 and 2,

respectively.

Pte Probabilistic output of test

data

M x 2 vector Same form as Ptr

* The variables N and M represents the number of training and test samples, respectively.

* The variable D represents the number of features.

In the function, the following processing is successively executed;

1. check optional variables

2. normalize the feature matrices

3. add a bias regressor to the feature matrices depending on „parm.usebias‟

4. learn weight parameters (boundary parameters) of a classifier

5. evaluate percent correct for training and test data.

The step 4 is the main step where the low-level function “slr_learning_var2” is called.

If you would like to modify this run-level function for your purpose, please understand what

each 5 step is doing and refer documents of low-level functions to learn how to call these

low-level functions.


~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

FAQ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Q1. What does the normalization step exactly do ?

A1. The normalization is simply to apply scaling and mean-correction to each element in

the feature matrix so that all the elements have appropriate range (basically -1 to 1). This

step is important to avoid an ill-conditioned problem in computation.

If „mean_mode‟ = „each‟ (default), the mean is calculated in a feature-wise way (i.e. each

feature has different mean). If „mean_mode‟ = „all‟, the mean is calculated as average over

all the elements (i.e all the feature shares one common mean value). In the same way,

„scale_mode‟ defines the way to compute scaling factors.

If „norm_sep‟ = 0 (default), the mean and scaling is computed using only training data and

then they are applied to both training and test feature matrices. On the other hand, if

„norm_sep‟ = 1, the mean and scaling is separately computed for training and test data (this

is not recommended).

If both „mean_mode‟ and „scale_mode‟ are each, the following affine transformation is

applied,

()

max{| |}

d d
d d

d
d dn dd n

m meanm
a x ma

 
 

 

xx
x

where  1 2, , , :DX N D x x x is a feature matrix.

Q2. How do I compute percent correct from „errTable_tr‟ or „errTable_te‟?

A2. Use the “calc_percor.m” function in the toolbox like

> percent_tr = calc_percor(errTable_tr)

Q3. Why is the size of the output variable „ww‟ the number of feature plus one?

A3. If „use_bias‟ = 1 (default), the bias-term is automatically concatenated to the last row of

the input feature matrix. The last row or value of „ww‟ is the weight of this bias regressor.

Q4. Is it possible to speed up the learning step?

A4. If you use the „biclsfy_slrvar.m‟ function, changing optional input „invhessian‟ may

improve the computation speed dramatically without affecting classification results. If the

dimension of your feature matrix is larger than the number of training samples, setting

„invhessian‟ to 0 is fast. Otherwise setting „invhessian‟ to 1 is fast.


~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Mathematical Basics 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Logistic regression (LR) is a well-known classifier originally developed in statistics. SLR is

a Bayesian extension of LR in which a sparseness prior is imposed on LR. In the literature,

two kinds of the sparsenss prior has been suggested; Automatic Relevance Determination

(ARD) prior ([8,9]) and Laplace prior ([5]). In this toolbox the ARD prior is employed. Please

see the appendix of [1] for equations of the model and derivation of the algorithm. It should

be noted that for SLR having feature selection property, the boundary function must be

linear (but not be linear kernel representation). This is because each feature has its own

weight parameter and thereby sparse estimation of weight parameters can be interpreted

as removing irrelevant features. For more details on the derivation of the algorithms, please

read “Mathematical_Issue.pdf” in this toolbox.


~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Referencing the toolbox 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

When using this tool for a paper please refer to the following paper:

Yamashita O, Sato MA, Yoshioka T, Tong F, Kamitani Y (2008).

Sparse estimation automatically selects voxels relevant for the decoding of fMRI

activity patterns. Neuroimage. Oct 1;42(4):1414-29.

The above manuscript contains basics of SLR (SLR-LAP and SMLR) and applications to

fMRI decoding.


~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Feedback & Bug report   

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Any feedback and bug report are welcome. Please keep contact with me

(oyamashi@atr.jp). I would like to respond as quickly as possible.


~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Licensing & Copy Right 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

SLR toolbox is free but copyright software, distributed under the terms of the GNU General

Public License as published by the Free Software Foundation. Further details on "copyleft"

can be found at http://www.gnu.org/copyleft/. No formal support or maintenance is provided

or implied.

mailto:oyamashi@atr.jp

 Acknowledgements

This toolbox is brought to you by ATR Computational Neuroscience laboratories in Kyoto.

This research was supported in part by the NICT, Honda Research Institute, the SCOPE,

SOUMU, the Nissan Science Foundation, and grants from the National Eye Institute to FT

(R01 EY017082 and R01 EY14202).

 References

[1] Yamashita O, Sato MA, Yoshioka T, Tong F, Kamitani Y (2008).

Sparse estimation automatically selects voxels relevant for the decoding of fMRI activity

patterns. Neuroimage. Oct 1;42(4):1414-29.

[2]Jaakkola TS, Jordan MI (2000), Bayesian parameter estimation via variational methods,

Statistics and Computing, 10, pp.25--37

[3] Bishop C, Tipping ME (2000),Variational relevance vector machines, Proceedings of the

16th Conference in Uncertainty in Artificial Intelligence, pp.46-53

[4] Bishop C (2006), Pattern recognition and machine learning, Springer, New York

[5] Tipping ME(2001), Sparse Bayesian Learning and the Relevance Vector Machine, J

Machine Learning Research, 1, pp.211-244

[6] Krishnapuram B, Carin L, Figueiredo MAT, and Hartemink AJ (2005), Sparse

Multinomial Logistic Regression Fast Algorithms and Generalization Bounds, IEEE Trans.

Pattern Analysis and Machine Intelligence, 27, pp.957-968

[7] Krishnapuram B, Hartemink AJ, Carin L and Figueiredo MAT (2004), A Bayesian

Approach to Joint Feature Selection and Classifier Design, IEEE Trans. Pattern Analysis

and Machine Intelligence, 26, pp.1105-1111

[8] MacKay D (1992), Bayesian interpolation, Neural Computation, 4, pp.415-447

[9] Neal RM(1996), Bayesian Learning for Neural Networks, Lecture Notes in Statistics 118,.

Springer

