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The Sparse Logistic Regression toolbox (SLR toolbox hereafter) is a suite of MATLAB 

functions for solving classification problems. It provides a solution for binary or multi-class 

classification problem. The unique feature is the weight parameters of the classifier are 

learned in a sparse way. Thus the algorithm estimates the weight parameters while it 

automatically finds important features. Due to this unique feature, SLR is applicable to a 

high-dimensional classification problem where the number of samples is much less than 

the number of features without suffering from „the overfitting problem‟ to some extent. In 

addition, SLR releases users from the feature selection task that is usually very 

time-consuming and requires experience. The algorithms are designed for problems of 

which feature size is up to several thousand and of which sample size is up to several 

thousand. 

 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Installation 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

SLR toolbox is a suite of MATLAB functions and scripts. MATLAB, a commercial 

engineering mathematics package, is required to use SLR toolbox. A couple of functions 

require the optimization toolbox (see below). Codes in the toolbox were written for MATLAB 

ver7.0.1 or later under LINUX and most functions has been test in MATLAB 7.0.1 and 7.5.  

 

To get installed the toolbox, you just download and unzip the file (for example 

SLR1.2alpha.zip) wherever you like. Some functions require “Optimization toolbox”. See 

the section List of “Run-level functions” for more details. 

 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Demonstration 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

This toolbox has two demonstrations in order to learn how the functions in SLR toolbox 

work. So working with these demo functions ('demo_*.m') is a good starting point.  

 

In two demo functions („demo_{binary, multiclass}_classification.m‟), you can see how to 



use SLR toolbox functions for binary or multi-class classification problems with simulated 

data sets as well as real experimental data (after feature computations). By changing a 

variable „data‟ on the top of each code, you can switch dataset. Real experimental data 

must be downloaded in addition to SLR toolbox functions. Please download 

„TESTDATA.zip‟ and unzip it in the parallel level where you unzip SLR toolbox. 

 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Functions in the toolbox 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Functions in SLR toolbox can be separated into 5 classes; “low-level functions”, “run-level 

functions”, “demo functions”, “common functions”, “functions from others” (see figure 1).  

 “Low-level functions” are the functions that execute learning classifier parameters. 

Most functions take a pair of a label vector and a feature matrix as the inputs and 

output estimated weight parameters.  

 “Run-level functions” are the functions that implement whole procedure to solve a 

classification problem (i.e. normalizing features  learning parameters  testing 

learned classifier). Most functions take a pair of a label vector and a feature matrix as 

inputs. Then classifier parameters are learned with training data and the learned 

classifier is evaluated with test data. Learned parameters as well as some 

performance measure will be output. There are seven functions for the binary 

classification problem and six functions for the multi-class classification problem (see 

below). It should be sufficient for most of users to know how to use these functions. 

 “Demo functions” are for demonstration purpose. You can learn how functions in the 

toolbox work using some examples. Please run these functions at first.  

 “Common functions” are the functions that are commonly used in toolbox. 

 “Functions from others” are the functions that are borrowed from EEGLAB toolbox and 

MATLAB File exchange.  
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Figure 1: Functions in SLR toolbox 



 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

List of “Run-level functions” 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

In “run-level functions”, each of seven functions of which name starts from „biclsfy_*‟ 

implements binary classifiers and each of six functions of which name starts from 

„muclsfy_*‟ implements multi-class classifiers (see Table 1). Classifier in the row of „Sparse‟ 

has feature selection property while classifiers in the row of „Others‟ do not (for comparison 

purpose). 

 

 

Binary classifiers 

Two sparse classifiers and three non-sparse classifiers are supported. Another two sparse 

classifiers were implemented (2009/06).  

 

 SLR-LAP: SLR with Laplace approximation. The marginal posterior-distribution of 

weight parameters is approximated by multivariate Gaussian distribution (see ref.[1] 

for details). This was developed for the research in ref.[1]. The optimization toolbox is 

Table 1: Supported classifiers in SLR toolbox (Run-level functions) 

 Binary classification Multi-class classification 

Sparse SLR-LAP  (biclsfy_slrlap.m) 

SLR-VAR  (biclsfy_slrvar.m) 

L1-SLR-LAP (biclsfy_l1slrlap.m) 

L1-SLR-C (biclsfy_l1slrc.m) 

SMLR  (muclsfy_smlr.m) 

SLR-LAP-1vsR (muclsfy_slrlapovrm.m) 

SLR-VAR-1vsR (muclsfy_slrvarovrm.m) 

SLR-VAR-1vs1  (muclsfy_slrvarovo.m) 

Others RLR-LAP (biclsfy_rlrlap.m) 

RLR-VAR (biclsfy_rlrvar.m) 

RVM     (biclsfy_rvm.m) 

RMLR  (muclsfy_rmlr.m) 

RLR-VAR-1vsR (muclsfy_rlrvarovrm.m) 

SLR   = Sparse Logistic Regression   L1-SLR = L1-norm Sparse Logistic Regression 

RLR   = Regularized Logistic Regression  RVM   = Relevance Vector Machine 

SMLR    = Sparse Multinomial Logistic Regression RMLR    = Regularized Multinomial Logistic Regression 

 

LAP     = with Laplace approximation  VAR     = with variational approximation 

C        = with component-wise update 

1vsR     = One-Versus-Rest      1vs1     = One-Versus-One 



required („fminunc.m‟). 

 SLR-VAR: SLR with variational approximation. The logistic function is approximated 

by Gaussian distribution using a variational parameter (see ref.[2.3] or section 10.6 of 

ref.[4]). The faster and the less memory. 

 RLR-LAP: Regularized logistic regression with Laplace approximation. This is not 

sparse algorithm. The regularization parameter is automatically determined by the 

algorithm. The optimization toolbox is required („fminunc.m‟). 

 RLR-VAR: Regularized logistic regression with variational approximation. This is not 

sparse algorithm. The regularization parameter is automatically determined by the 

algorithm. 

 RVM: Relevance Vector Machine as proposed by Tipping (see ref.[5]). Bayesian 

version of Support Vector Machine (SVM). The linear and Gaussian kernels are 

supported. The Gaussian kernel RVM is only non-linear classifier supported in this 

toolbox. 

 L1-SLR-LAP: L1-norm based sparse logistic regression (see ref.[7]). This classifier 

also provides sparse solution. The user must tune one parameter that determines 

extent of sparsity. This program has not been debugged carefully yet. The optimization 

toolbox is required („fminunc.m‟). 

 L1-SLR-C: L1-norm based sparse logistic regression (see ref.[6]). This is fast and 

requires less memory. This program has not been debugged carefully yet. 

 

Two sparse classifiers, SLR-LAP and SLR-VAR, are derived from the identical probabilistic 

model (see ref[1]) but different approximation to the posterior distribution. The difference 

between RLR-LAP and RLR-VAR is as in the same way. Among two sparse classification 

methods, I recommend SLR-VAR because it is faster and require less memory. 

L1-SLR-LAP and L1-SLR-C are also sparse classifiers that is based on the different 

probabilistic model form SLR-LAP(-VAR). I have not debugged these two codes carefully 

yet. 

 

Multi-class classifier 

Four sparse classifiers and two non-sparse classifiers are supported so far.  

 

 SMLR : Sparse Multinomial Logistic Regression (see ref.[1]). The multinomial 

distribution is used for observation. In general, memory and time required are huge. 

The optimization toolbox is required („fminunc.m‟).  

 SLR-LAP-1vsR : Combination of SLR-LAP classifiers. One-versus-the rest scheme is 



used. The optimization toolbox is required („fminunc.m‟). 

 SLR-VAR-1vsR : Combination of SLR-VAR classifiers. One-versus-the rest scheme is 

used. The faster computation and the less memory. 

 RMLR : Regularized Multinomial Logistic Regression. One regularization parameter 

common to all the classes is automatically estimated. The optimization toolbox is 

required („fminunc.m‟). 

 RLR-VAR-1vsR : Combination of SLR-VAR classifiers. One-versus-the rest schemes 

is used. One regularization parameter per each class is automatically estimated. 

 SLR-VAR-1vs1: Combination of SLR-VAR classifiers. One-versus-the one scheme is 

used. The faster computation and the less memory. 

 

SMLR is a true multinomial classifier that uses multinomial distribution as the likelihood 

function. SLR-LAP-1vsR and SLR-VAR-1vsR are consisting of combination of sparse 

binary classifiers (see one-versus-the-rest scheme in chapter4 of ref[4] for example). In this 

release, one-versus-one scheme is also supported for SLR-VAR.  

 

In theory, SMLR is the best classifier for multi-class problem since the model learning take 

into account all the information among classes. But in my experience SLR-LAP-1vsR or 

SLR-VAR-1vsR, SLR-VAR-1vs1 do perform as well as SMLR probably due to a small 

number of training samples. Since SMLR requires rather large amount of memory and long 

computation time whereas SLR-VAR-1vs1 requires less memory and computation time, I 

recommend SLR-VAR-1vs1 for the first trial. It should be noted that the current 

implementation of SLR-VAR-1vs1 assumes that each label has the same number of 

samples (this assumption is used when combining multiple binary classifiers results.).  

 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

How to use “Run-level functions”  

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

The details of “biclsfy_slrvar.m” are explained as an example of binary classifiers. You can 

easily understand the structure and options of other run-level functions since they share 

the same structure and the similar but slightly different options with “biclsfy_slrvar.m”.  

 

The function has following format; 

 

- Syntax 

[ww, ix_eff_all, errTable_tr, errTable_te, parm, AXall,Ptr,Pte] =… 



 biclsfy_slrvar(x_train, t_train, x_test, t_test, varargin). 

 

- Example of Usage 

[ww, ix_eff, errTable_tr, errTable_te] = biclsfy_slrvar(xtr, ttr, xte, tte, „nlearn‟, 300, „mean‟, 

„displaytext‟, 0); 

 

- Input variables 

Name Brief explanation Type Details 

x_train Training feature matrix  N x D matrix Each row represents a feature vector 

for a specific sample. 

t_train Training label vector  N x 1 vector The nth element represents the task 

label for the nth row of training feature 

matrix (i.e. feature vector of the nth 

sample). Elements of this vector must 

consist of any two integer values (e.g. 

{0,1} or {1,2}). . 

x_test Test feature matrix M x D matrix  Same form as x_train 

t_test Test label vector M x 1 vector Same form as t_train 

* The variables N and M represents the number of training and test samples, respectively. 

* The variable D represents the number of features. 

 

- Optional Input variables 

Name Brief explanation Type Details 

scale_mode Mode of scaling when 

normalizing the feature 

matrices  

String 

[„each‟] 

Each row represents a feature vector 

for a specific sample. 

mean_mode Mode of mean correction 

when normalizing the feature 

matrices  

String 

[„each‟] 

The nth element represents the task 

label for the nth row of training feature 

matrix (i.e. feature vector of the nth 

sample). Elements of this vector must 

consist of any two integer values (e.g. 

{0,1} or {1,2}). . 

ax0 Initial relevance parameter Scalar [1]  This value is set to all the relevance 

parameters. 

nlearn Number of iterations for 

learning a classifier 

Scalar[1000]   



nstep Number of iterations for 

displaying an intermediate 

result during learning.   

Scalar[100] Invalid when „displaytext‟ option is 0. 

amax Maximum relevance 

parameter  

Scalar [10^8]  Features of which relevance 

parameters exceed this value are 

removed from a classifier. This 

threshold is important to avoid 

computational instability.  

usebias Flag for adding a constant 

term or not 

Boolean [1] If 1, the constant vector ones(N,1) is 

added to the last column of feature 

matrices. 

norm_sep Flag for applying 

normalization to training and 

test data using different 

scaling and mean correction 

factors.  

Boolean [0]   

displaytext Flag for displaying a result 

during learning iterations 

Boolean [1]   

invhessian Flag for using inverse of 

Hessian matrix during 

learning a classifier 

Boolean [1]  If 1, an inverse of Hessian matrix (size 

D x D) is used in every learning 

iteration. If 0, equivalent matrix 

manipulations (size N x N) is used. 

* The default values usually work reasonably well. 

 

- Output variables 

Name Brief explanation Type Details 

ww Weight vector,  D (or D+1) x 

1 matrix 

The last element corresponds to a 

constant vector if usebias = 1 or the 

size of a vector is D+1. 

ix_eff_all Indicies of features selected 1 x 1 cell  

errTable_tr Confusion matrix for training 

data 

2 x 2 matrix  The 1
st
 row represents the number of 

samples classified as 1 or 2 when the 

true label is 1. The 2
nd

 row represents 

the number of samples classified as 1 

or 2 when the true label is 2. 

errTable_te Confusion matrix for test 2 x 2 matrix Same form as errTable_tr 



data 

parm Parameter struct struct  

Axall History of relevance vector 

updates 

 x D vector  

Ptr Probabilistic output of 

training data 

N x 2 vector The 1
st
 and 2

nd
 column represent the 

probability of training samples 

classified as label 1 and 2, 

respectively.  

Pte Probabilistic output of test 

data 

M x 2 vector Same form as Ptr 

* The variables N and M represents the number of training and test samples, respectively. 

* The variable D represents the number of features. 

 

In the function, the following processing is successively executed; 

1. check optional variables 

2. normalize the feature matrices 

3. add a bias regressor to the feature matrices depending on „parm.usebias‟ 

4. learn weight parameters (boundary parameters) of a classifier 

5. evaluate percent correct for training and test data. 

 

The step 4 is the main step where the low-level function “slr_learning_var2” is called.  

If you would like to modify this run-level function for your purpose, please understand what 

each 5 step is doing and refer documents of low-level functions to learn how to call these 

low-level functions. 

 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

FAQ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Q1. What does the normalization step exactly do ?  

A1. The normalization is simply to apply scaling and mean-correction to each element in 

the feature matrix so that all the elements have appropriate range (basically -1 to 1). This 

step is important to avoid an ill-conditioned problem in computation. 

If „mean_mode‟ = „each‟ (default), the mean is calculated in a feature-wise way (i.e. each 

feature has different mean). If „mean_mode‟ = „all‟, the mean is calculated as average over 

all the elements (i.e all the feature shares one common mean value). In the same way, 

„scale_mode‟ defines the way to compute scaling factors.  



If „norm_sep‟ = 0 (default), the mean and scaling is computed using only training data and 

then they are applied to both training and test feature matrices. On the other hand, if 

„norm_sep‟ = 1, the mean and scaling is separately computed for training and test data (this 

is not recommended).  

If both „mean_mode‟ and „scale_mode‟ are each, the following affine transformation is 

applied, 
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Q2. How do I compute percent correct from „errTable_tr‟ or „errTable_te‟? 

A2. Use the “calc_percor.m” function in the toolbox like   

> percent_tr = calc_percor(errTable_tr) 

 

Q3. Why is the size of the output variable „ww‟ the number of feature plus one? 

A3. If „use_bias‟ = 1 (default), the bias-term is automatically concatenated to the last row of 

the input feature matrix. The last row or value of „ww‟ is the weight of this bias regressor.  

 

Q4. Is it possible to speed up the learning step? 

A4. If you use the „biclsfy_slrvar.m‟ function, changing optional input „invhessian‟ may 

improve the computation speed dramatically without affecting classification results. If the 

dimension of your feature matrix is larger than the number of training samples, setting 

„invhessian‟ to 0 is fast. Otherwise setting „invhessian‟ to 1 is fast.  

 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Mathematical Basics 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Logistic regression (LR) is a well-known classifier originally developed in statistics. SLR is 

a Bayesian extension of LR in which a sparseness prior is imposed on LR. In the literature, 

two kinds of the sparsenss prior has been suggested; Automatic Relevance Determination 

(ARD) prior ([8,9]) and Laplace prior ([5]). In this toolbox the ARD prior is employed. Please 

see the appendix of [1] for equations of the model and derivation of the algorithm. It should 

be noted that for SLR having feature selection property, the boundary function must be 

linear (but not be linear kernel representation). This is because each feature has its own 

weight parameter and thereby sparse estimation of weight parameters can be interpreted 



as removing irrelevant features. For more details on the derivation of the algorithms, please 

read “Mathematical_Issue.pdf” in this toolbox. 

 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Referencing the toolbox 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

When using this tool for a paper please refer to the following paper:  

 

Yamashita O, Sato MA, Yoshioka T, Tong F, Kamitani Y (2008). 

Sparse estimation automatically selects voxels relevant for the decoding of fMRI 

activity patterns. Neuroimage. Oct 1;42(4):1414-29. 

 

The above manuscript contains basics of SLR (SLR-LAP and SMLR) and applications to 

fMRI decoding. 

  

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Feedback & Bug report   

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Any feedback and bug report are welcome. Please keep contact with me 

(oyamashi@atr.jp). I would like to respond as quickly as possible. 

 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Licensing & Copy Right 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

SLR toolbox is free but copyright software, distributed under the terms of the GNU General 

Public License as published by the Free Software Foundation. Further details on "copyleft" 

can be found at http://www.gnu.org/copyleft/. No formal support or maintenance is provided 

or implied. 

 

mailto:oyamashi@atr.jp
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