近赤外光分光計測 (NIRS) と 拡散光トモグラフィ (DOT)

ATR脳情報解析研究所 計算脳イメージング研究室 室長 理研革新知能統合研究センター チームリーダ CINET 客員研究員 大阪大学院 生命機能研究科 客員準教授

山下 宙人

講義内容

1. 近赤外分光計測 (NIRS)

- 2. 拡散光トモグラフィ (DOT)
- 3. ATRにおけるDOT研究
- 4. まとめ

NIRS装置:光で測る脳活動計測日常環境における脳計測へ

精神疾患診断補助などの臨床応用

ソーシャルインタラクションの研究

赤ちゃん研究

可搬型・安全・ 簡便・ 低コスト

NIRSの歴史

1977

Jöbsis demonstrates the possibility to detect changes of adult cortical oxygenation during hyperventilation by near-infrared spectroscopy.

1991/1992

First fNIRS studies carried out independently by Chance, Kato, Hoshi, and Villringer by using single-channel instruments

1993

Publication of the first 6 fNIRS studies

Simultaneous monitoring of different cortical areas by 5 single-channel instruments (Hoshi)

1994

Hitachi company (Japan) introduces a 10-channel CW system (Maki)

2001

First three-dimensional CW tomographic imaging of the brain (DYNOT, NIRx Medical Technologies, US) (Bluestone) トモグラフィ

M. Ferrari, V. Quaresima / NeuroImage 63 (2012) 921–935より

シングルチャネル ヒト脳機能研究

マルチチャネル、トポグラフィ

原理発見

NIRSの発展:高精度化と簡便化

高精度化

簡便化

M. Ferrari, V. Quaresima / NeuroImage 63 (2012)

NIRS計測原理:神経活動の変化に伴う局所脳血流

NIRS計測原理: "近赤外領域は生体の窓"

Weissleder 2001, nature biotechnology

NIRS計測原理:光の吸収によるヘモグロビン変化の計測

(Modified) Lambert-Beer則

$$\Delta OD = \log \frac{I_0}{I_1} = \varepsilon cl$$

NIRS計測原理:複数波長による分光計測

Modified Beer-Lambert Law 複数波長·複数分子

$$\Delta \Phi_{780} = \left(\varepsilon_{oxy,780} \Delta c_{oxy} + \varepsilon_{deoxy,780} \Delta c_{deoxy} \right) L$$

$$\Delta \Phi_{805} = \left(\varepsilon_{oxy,805} \Delta c_{oxy} + \varepsilon_{deoxy,805} \Delta c_{deoxy} \right) L$$

$$\Delta \Phi_{830} = \left(\varepsilon_{oxy,830} \Delta c_{oxy} + \varepsilon_{deoxy,830} \Delta c_{deoxy} \right) L$$

光量変化
しは部分光路長

シングルチャネルNIRS計測

- Source-detector距離 = 30mm
- 光の潜る深さ = 20 ~ 30 mm

現在の標準的な計測:マルチチャネル NIRS計測

- トポグラフィマップ: 頭皮上の2次元マップ
- 時分割計測:光の入射タイミングをずらす

トポグラフィマップ (補間表示)

マルチチャネルNIRSによる機能局在と機能ネットワーク

- 可搬性·携帯性
- 低い計測コスト

○ fMRIで計測出来ない被験者群の計測(赤ちゃん、ペースメーカを入れた人、閉所恐怖所の人)

- △ Oxy-hemoglobinとdeoxy-hemoglobinを同時に計測
- × 光の届かない深い脳部位の計測は困難
- × 低い空間分解能 (cm)
- × 頭皮血流問題
- × 低いS/N比 (特に黒髪の被験者)

講義内容

1. 近赤外分光計測 (NIRS)

2. 拡散光トモグラフィ (DOT)

3. ATRにおけるDOT研究

4. まとめ

マルチチャネルNIRS研究の問題点

1. 低空間分解能(30mm)

figure from Torrichelli et al. 2014

2. 頭皮血流の混入

観測値の 40~60%の分散

(Sagger and Berger 2005, 2007, Kohno et al. 2007, Takahashi et al. 2011, my unpublished data,)

マルチチャネルNIRS研究の問題点

3. 再現性

4. 定量性

図引用:慶応大学岡田先生のスライドから

$$\Delta OD = \left(\varepsilon_{oxy}\Delta c_{oxy} + \varepsilon_{deoxy}\Delta c_{deoxy}\right)L$$

拡散光トモグラフィ法 (Diffuse Optical Tomography, DOT)

NIRS装置で計測した光量変化値から <u>血流変化3次元画像</u>を計算機上で再構成

DOT トモグラフィ

- 空間分解能の向上
- 定量性の向上
- ・ 深さ方向の情報

- 高密度NIRS計測
- プローブ位置計測
- MRI計測

t=0.2 ns

- 頭部セグメンテーション
- プローブ位置合わせ
- 光伝搬シミュレーション

• 画像再構成 アルゴリズム

高密度計測による空間情報の増大

トポグラフィ用計測

光路の重なりがない

水平方向・深さ方向に 光路の重なりあり

光伝播モデル

光伝搬シミュレーション

モンテカルロ シミュレーション (using "MCX") 空間解像度 1mm

 $S(\mathbf{r};\mathbf{r}_{s},\mathbf{r}_{d}) = \frac{\Phi(\mathbf{r}_{s},\mathbf{r})\Phi(\mathbf{r},\mathbf{r}_{d})}{\Phi_{0}(\mathbf{r}_{s},\mathbf{r}_{d})}$

Rytov近似 (吸光係数の変化が微小)

> 500 voxels

#unknowns >> #measurements **不良設定問題**

画像再構成:深さ方向の推定の難しさ

深さ方向の感度依存性が指数関数的に減少する。

Relative sensitivity	10mm
at various depth	20mm
	30mm

5mm, 1.00 10mm, 0.42 20mm, 0.025 30mm, 4.0E-4 40mm, 3.8E-6

Scalp

Skull

CSF

GM

WΜ

60

被験者 12

13mm 29mm

20

30 Ch No.

40

50

0.1

0 -

10

DOTを用いたヒト脳機能研究

DOT関連研究 その1

高密度センサ配置を用いて視覚野のレチノトピーを再現

B.R. White & J.P. Culver, NueroImage (2010)

BR White and JP Culver (2010)

DOT関連研究 その2

異なる指への圧刺激に関連する脳活動の分離に成功

高密度センサ配置 (体性感覚野) 圧刺激

推定活動

C. Habermehl et al, Neurolmage (2011)

超高密度計測 (プローブ間隔7.5mm)

C. Habermehl et.al (2011)

大規模DOTシステムによる脳機能計測

а

- 1000チャネル以上の計測システム
- グローバル回帰による頭皮血流除去
- 重み付き二乗最小画像再構成アルゴリズム

大脳皮質表面の 3分の2程度をカバー

Eggbrecht et al. Nature Photonics, 2014

大規模DOTシステムによる脳機能計測

Eggbrecht et al. Nature Photonics, 2014

講義内容

1. 近赤外分光計測 (NIRS)

2. 拡散光トモグラフィ (DOT)

3.ATRにおけるDOT研究

4. まとめ

ATR脳情報解析研究所のDOT研究

DOT画像の精度を向上させるために、 独自の画像再構成アルゴリズムを提案。

- スパース階層ベイズ画像再構成
 T. Shimokawa et al., Opt. Express 20, 20427-20446 (2012)
- 頭皮-皮質モデルを用いた階層ベイズ画像再構成
 T. Shimokawa et al., Biomed. Opt. Express 4, 2411-2432 (2013)
 O.Yamashita et al., JACIII, Vol.18, No.6 pp. 1026-1033 (2014)
 O.Yamashita et al., NeuroImage , 135, 287-299, (2016)
- + 多方向 NIRSデバイス開発と連続拡散光トモグラフィ T.Shimokawa et al. 2016

画像再構成アルゴリズムの先行研究

- 正則化法
 - 最小二乗ノルム (Tikhonov and Arsenin 1977)
 - 深さ補正付き最小二乗ノルム (Culver et al. 2003)
 - 領域ごとの制約 (Li et al. 2004)
 - L1ノルム最小化スパース推定, EM (Cao et al. 2007)
 - 深さ補正アルゴリズム (Niu et al. 2010)
- ベイズモデル
 - 階層モデル, 解剖情報, EM-like algorithm (Guven et al. 2005)
 - 共分散モデル, ReML (Abdelnour et al. 2010)
 - スパースベイズモデル (Shimokawa et al. 2012)
 - 頭皮+皮質モデル (Shimokawa et al. 2013)

T. Shimokawa et al., Opt. Express 20, 20427-20446 (2012)

線形画像再構成問題:不良設定問題

不良設定問題は事前情報を必要とする

Non-uniqueness indicates that data is not sufficient. Additional a-priori information is required.

対象に関する事前情報による再構成画像の改善

(mm) 20\

30

y (mm)

-20

0

20

(Regularized) cost minimization $E(\mathbf{z}) = \|\mathbf{y} - S\mathbf{z}\|^2 + \lambda f(\mathbf{z})$ 観測へのフィット 事前情報

Minimum norm (Tikhonov and Arsenin 1977)

Depth-compensation minimum norm (Culver et al. 2003)

0

x (mm)

 $f(\mathbf{z}) = \|\mathbf{W}\mathbf{z}\|^2$

 $\mathbf{W} = \sqrt{(diag(S'S + \beta I))}$

-20

δµa (mm⁻¹)

> 0.05

> 0.0375

> 0.025

20

> 0.0125

Sparse Bayes (Shimokawa et al. 2012)

提案手法:スパース階層ベイズ画像再構成

Data fit
$$P(\mathbf{y}|\mathbf{z}) = N(\mathbf{S}\mathbf{z}, \sigma^2 \mathbf{I})$$

Prior $P(\mathbf{z}|\mathbf{a}) = \prod_{v} P(z_v|a_v) = \prod_{v} N(0, a_v^{-1})$
 $P(\mathbf{a}) = \prod_{v} P(a_v) = \prod_{v} Gamma(a_{0v}, \gamma_0)$

Automatic Relevance Determination, ARD (Mackay 1994, Neal 1994)

- 解ベクトルをスパースベクトルにする事前分布 (Faul et al. 2002, Wipf et.al 2008)
- 他分野における応用 (Tipping 2001, Sato et al. 2004, Yamashita et al. 2008, Wipf et al. 2010)
- データ適応的にボクセルごとに正則パラメータを設定

$$E(\mathbf{z}, \mathbf{a}) = \|\mathbf{y} - S\mathbf{z}\|^2 + \sum_{v} a_{v} z_{v}^2 + g(\mathbf{a})$$

提案手法:スパース階層ベイズ画像再構成アルゴリズムの実装

変分ベイズ法を用いることにより、次のアルゴリズムが得られる。 初期値は、Culverらが提案した重み付き最小二乗ノルム法の解を用いる。

実験1:水槽ファントムを用いた検証

optical parameter Absorption: μ_a =0.019mm⁻¹, Scattering: μ_s '=1.1mm⁻¹ (similar to cerebral cortex)

One activity case

depth accuracy probe intervals

best achievable spatial resolution

Sources & detectors at the bottom

結果: 深さ20mm程度まで推定可能

結果:距離10ミリの活動が弁別可能(最良のケース)

) : true absorber position

T. Shimokawa et al., Biomed. Opt. Express 4, 2411-2432 (2013) O.Yamashita et al., JACIII, Vol.18, No.6, 1026-1033 (2014) O.Yamashita et al., NeuroImage, Vol.135, 287-299 (2016)

ヒト脳機能研究に適した 事前情報とは?

- 観測光量変化は、頭皮と皮質の血流変化に起因する。
- ・ 皮質の活動は局在性が高い (fMRI研究から).

視覚野の

NIRS計測

• **頭皮の活動は空間的に広がっている** (Zhang et al. 2005, Kohno et al. 2007, Gregg et al. 2010).

Gregg et.al 2010

$$\mathbf{y} = S_{\mathbf{c}}\mathbf{z}_{\mathbf{c}} + S_{s}\mathbf{z}_{\mathbf{s}} + \epsilon$$

皮質 頭皮
スパース
(Automatic relevance determination,
 $\mathbf{y} = S_{\mathbf{c}}\mathbf{z}_{\mathbf{c}} + S_{s}\mathbf{z}_{\mathbf{s}} + \epsilon$

Mackay 1992)

Shimokawa et al. 2013

Data fit
$$P(\mathbf{y}|\mathbf{z}_{c},\mathbf{z}_{s}) = N(\mathbf{S}_{c}\mathbf{z}_{c} + \mathbf{S}_{s}\mathbf{z}_{s}, \sigma^{2}\mathbf{I})$$

Prior $P(\mathbf{z}_{c}|\mathbf{a}) = \prod_{v} P(z_{v}|a_{v}) = \prod_{v} N(0, a_{v}^{-1})$
 $P(\mathbf{a}) = \prod_{v} P(a_{v}) = \prod_{v} Gamma(a_{0v}, \gamma_{0})$
度質: スパース事前分布

$$P(\mathbf{z}_{\mathbf{s}}|\beta) = N(\mathbf{0}, (\beta L'L)^{-1})$$
$$P(\beta) = \beta^{-1}$$

頭皮:空間的滑らかさを 仮定した事前分布

実験1: リアルな頭部モデルを用いたコンピュータシミュレーション

結果:深さ25ミリまでは局在誤差5ミリ程度推定可能

Shimokawa et al. 2013

実験2:ヒトケーススタディ

- 右人差し指の伸展運動 (1Hzの音キューに合わせて)
- 被験者:1名(右利き)
- 1ラン = 15試行、3ラン

手法:計測

NIRS

- 高密度計測用にカスタマイズした
 FOIRE3000 (Shimadzu Co.)
- 左一次運動野をカバー
- 5 x 5 正方配列
- 13mm S-Dペア : 16
- 29mm S-Dペア : 48

•センサ位置をデジタイザで計測

fMRI

- Trio 3T (Simens)
- 3x3x3 mm/voxel
- TR = 3 sec.
- 全脳

T1-MRI

• 1x1x1 mm/voxel

Yamashita et al. 2014

手法:解析パイプライン

Yamashita et al. 2014

手法:解析詳細

NIRS

- データ前処理
 - Digital filter (Lowpass 0.7Hz, Highpass 0.01Hz)
 - Trial average (45 trials, 8 sec. before and 35 sec after task onset)
- ・ 光伝播シミュレーション
 - Monte Calro Simulation (using "MCX", Photon number 10⁹)
 - Five layer head model { Scalp, Skull, CSF, Gray Matter, White matter}
 - Optical parameters in five tissues \rightarrow Fang 2011, Biomed. Opt.
- 画像再構成アルゴリズム
 - 2 mm voxel
 - # of iterations 50000
 - Gamma0 = 0

fMRI

一般線形モデル解析 (SPM8) 頭部動き補正・T1へのレジストレーション・統計解析

結果:皮質活動の再構成結果

結果:皮質活動の時系列データ(ピークボクセル)

結果: 頭皮活動の再構成 (MN)

結果:データ再構成

	頭皮	皮質
1st channels	0.4.9/	0.20/
(1.3cm)	94%	0.3%
2 nd channels (3.0 cm)	17%	46%

45試行の平均

補助結果:同1つ被験者の3日間の結果

0413 0425 0609

Superimposed on fMRI T > 10

Unpublished data

実験3:3段階の運動課題・複数被験者

- ・ 12人 (右利き)
- ・ 3段階の運動課題 (30 trials/each condition, different across runs)
 - 手の開閉運動 → large activity cluster
 - 指の伸展運動 → small activity cluster
 - 運動なし → no activity

業界標準のWashington大学の手法と比較 (Eggbrecht et al. 2014)

Yamashita et al. NeuroImage, 2016

fMRI T-map 例

Run1

Run2

Η

F

	活動クラ スタサイ ズ (mm ³)	最大T値	Run間 相関
Hand	3472	27.3	0.88
	(1582)	(5.1)	(0.07)
Finge	1389	17.4	0.78
r	(1288)	(3.9)	(0.11)
No	0 (0)	2.7 (0.5)	-

Finger条件 subject6は活動が なかったため除外 13 mm S-D pairs

結果: 皮質活動の再構成 (比較)

Yamashita et al. NeuroImage, 2016

結果:全被験者の結果まとめ

• LE = 6mm, SS = 0.6 (HAND), LE=8mm, SS=0.4 (FINGER)

Less false positive compared with the standard algorithm

Yamashita et al. NeuroImage, 2016

多出射NIRSデバイスの開発と低密度DOT

Shimokawa et al., Biomedical Optics Express, 2016, collaboration with RICHO company

多出射NIRSデバイスの開発と低密度DOT:ヒト計測

Shimokawa et al., Biomedical Optics Express, 2019, collaboration with RICHO company

現在進行形のプロジェクト: 安静時ネットワークの再構成

(N=20), SmartNIRS 152ch

fMRI vs DOT DOT1 vs DOT2

Conventional DOT(*)	0.44	0.56	AAL (Automated Anatomical Labeling)
Proposed DOT	0.47	0.76	116 nodes
Conventional DOT(*)	0.31	0.54	Shen's parcellation
Proposed DOT	0.36	0.73	278 nodes

(*)global regression + weighted Tikhonov regularization Aihara, Shimokawa + in preparation

拡散光トモグラフィ研究のまとめ

- ATR独自の画像再構成アルゴリズムの開発
 - 既存アルゴリズムに比べての原理的優位性
 - ファントム・ヒト実験での証明
- 分野の知見が増えるとともに事前情報の検討が必要
 う頭皮血流の一様性など(前額部ではそうでないという研究もある)
- アプリケーションの開拓が必要

講義内容

1. 近赤外分光計測 (NIRS)

2. 拡散光トモグラフィ (DOT)

3. ATRにおけるDOT研究

4.まとめ

- NIRS計測の基礎
- NIRS研究の先端的話題: 拡散光トモグラフィ法 (DOT)
- ATRで取り組んでいるDOT画像再構成アルゴリズム
- NIRSデバイスの今後
 - 携帯化・無線化によるより簡便な計測
 - 携帯型・高密度デバイスの開発 (https://twitter.com/gowerlabs)
 - 時間分解計測
- キラーアプリケーション
 - 赤ちゃん研究・発達障害診断など
 - 精神疾患の診断
 - ニューロフィードバック
 - リハビリテーション
 - ハイパースキャニング