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Abstract

Human being has long been challenging to understand functions and orga-
nizations of the brain. With striking developments of various measurement
apparatus and methodology after twentieth century, we have accumulated not
only the knowledge about the mechanism of our brain but also measurements
of brain activities from various aspects. In order to make the best use of these
data combined with a priori knowledge, the development of statistical methods
is indispensable.

Nowadays the functional Magnetic Resonance Imaging (fMRI) technique
and the electroencephalography (EEG) are two common tools for the under-
standing of human cognition as well as for the clinical diagnosis. By the fMRI
technique, the change of regional cerebral blood flow, which is supposed to
result from electrical neuronal activities on the corresponding local region, is
measured as temporally successive images covering the whole brain volume
with high spatial resolution but low temporal resolution. By the EEG, evoke
potentials can be measured in several tens positions on the scalp surface with
high temporal resolution as a consequence of the transmission of electric cur-
rents (a collection of electrical neuronal activities) inside the brain.

In this thesis, for the purpose of analyzing these two kind of the data sets,
the methodology in the field of time series analysis will be applied and
developed. Since these two data sets have distinct properties, the purpose and
the tool for analysis are also distinct. Therefore this thesis consists of two
parts, the inverse problem of the EEG and the causal analysis for the fMRI
data.

In the first part of this thesis, the dynamical inverse problem of the
EEG generation will be discussed. Since the EEG recording is an indirect
observation of electrical sources inside the brain, the inference to localize the
sources, called the ’inverse problem’ are necessary. In general, in order to
solve the inverse problem we have to combine additional information to the
observation because it is impossible to uniquely determine the solution from
the observation itself. In this thesis, we will consider the dynamical inverse
problem so that general spatio-temporal constraints can be incorporated. This
aspect has been neglected in many previous studies of the inverse problem of
the EEG generation in spite of its importance.

Mathematically the dynamical inverse problem will be formulated as the
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state estimation problem. The system equation in the state space representa-
tion describes general spatio-temporal constraints. By assuming a parametric
model for the dynamics, we can choose in a sense the ’best fitting’ constraints
onto the solution. In principle both the parameter estimation and the state
estimation (the solution) can be done by means of the celebrated Kalman
filtering algorithm.

However due to high dimensionality of the state in the EEG application,
the difficulty occurs in the computational aspect. As alternatives of ordinary
Kalman filtering, the author will propose three approximate filtering algo-
rithms; the recursive penalized least squares (RPLS) method, observable pro-
jection Kalman filtering and partitioned (spatio-temporal) Kalman filtering.
The different ways of approximation of covariance matrices of the filtered and
prediction states are employed in these algorithms. The simulation study will
demonstrate similarity of the solutions via three methods in the case of sim-
ple dynamics. However the difference of three solutions could become larger
when the dynamics becomes complex. It would be necessary to examine the
situation of problems and validity of the assumption.

The data analysis of real alpha wave will show two sources located in the
occipital region of both the left and right hemisphere, which has been reported
in the previous studies. In addition, the estimated dynamics inside and outside
the occipital region is observed to differ in periodicity using a regional AR
model as the dynamics.

In the latter part of this thesis, the methodology to evaluate the effective
connectivity of the fMRI data will be investigated. In the fMRI studies, re-
cently, more attention has been paid to the analysis of the effective connectivity
defined as "the influence that one neural system exerts over another" (Friston
et al. 1995). In order to accomplish this purpose, the method developed in
the multivariate time series analysis will be applied. It is a crucial advantage
of this approach that no assumption about the direction of connectivity is re-
quired, whereas the structural equation model, the most common approach to
evaluate the effective connectivity so far, requires to determine and to restrict
the direction of connectivity apriori.

For this purpose, the author proposes to apply the Akaike’s noise contri-
bution ratio (ANCR), which quantifies the influence on one time series from
another time series. Using the data from the random dot experiment, the
change of the connectivity between two conditions will be evaluated by the
ANCR as a measure. As a result, the increase of the connectivity on the task
condition is observed compared with the connectivity on the control condition.
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Chapter 1

Introduction

1.1 Context and Motivation

Measurements of electromagnetic fields on the scalp surface provide valuable
information about the underlying brain dynamics. By measuring the electrical
potential or the magnetic field on several locations of the scalp surface, elec-
troencephalography (EEG) or magenetoencephalography (MEG) are obtained.
It is commonly believed that these potentials are generated by electrical cur-
rents in the extracellular media, resulting from the electrical and chemical
neuronal activity of the brain.

Currently there is considerable interest in localizing non-invasively such
electrical sources of the EEG in the brain (source localization problems).
The source localization problem can be separated to the forward problem
and the inverse problem. The forward problem consists in determining the
electromagnetic field at the scalp from a known source configuration. The
inverse problem describes the opposite situation: given the volume conductor
and the electromagnetic field at the scalp, the location and time course of the
sources is sought.

The forward problem is a "simple electromagnetic problem" that can be
expressed and solved with Maxwell’s equation. Its difficulty lies in modeling
the volume conductor and a human head, and lies in solving the resulting
partial differential equation after modeling. Once the relationship between
brain electrical activity and electromagnetic scalp fields has been established,
the inverse problem can be approached. The main difficulty to solve the inverse
problem lies in the fact that EEG/MEG observations do not contain a sufficient
amount of information to precisely reproduce these current sources. For this
reason, there will inevitably be an infinite number of possible inverse solutions
consistent with the measurements given. In order to find out a unique and
plausible inverse solution, we have to combine additional information in the
guise of physiological or physical knowledge about the sources.
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Brain

Activty Head

Model EEG 

Inverse Problem 

Forward Problem 

Figure 1.1: Schematic figure of the forward problem and inverse problem. Forward prob-
lem: Given a configuration of dipoles and a head model, electrical potentials on the head
scalp is calculated. Inverse problem: given the volume conductor and the electromagnetic
field at the scalp, the location and time course of the sources is sought.

Currently two common approaches have been employed for solving inverse
problems; ’dipole method’ and ’distributed linear solution’ approach. In the
’dipole method’ EEG measurements are generated by a relatively small num-
ber of focal dipole, each of which can be modeled as a single fixed dipole or
re-oriented dipole (Scherg and Ebersole 1994). The idea is to render the in-
verse problem overdetermined by considering fewer unknown parameters than
independent measurements available.

In the ’distributed linear solution’ approach, a discretization of brain vol-
ume into a set of voxels is employed, each of which is considered to be the loca-
tion of a current source. Corresponding to the number of voxels, the unknowns
to be estimated increase and result in highly underdetermined problems but
the EEG observation is described by a linear function of current sources. In
order to obtain a unique solution, various constraints have been suggested in
previous studies: as prominent examples I mention optimal resolution (Backus
and Gilbert 1968; Grave de Peralta Menendez et al. 1997; Grave de Peralta
Menendez and Gonzalez Andio 1999), L2 minimum norm (Hämäläinen and
Ilmoniemi 1984), L1 minimum norm (called ’selective minimum norm’) (Mat-
suura and Okabe 1995; Matsuura and Okabe 1996; Uutela et al. 1999) and
maximum spatial smoothness (called ’low resolution brain electromagnetic to-
mography’, LORETA) (Pascual-Marqui et al. 1994).

In several papers (Pascual-Marqui and Michel 1994; Pascual-Marqui 1999;
Grave de Peralta Menendez and Gonzalez Andio 2002) relative advantages and
disadvantages of these approaches have been discussed from a purely spatial
point of view; however, these approaches exploit exclusively the information
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contained in one instantaneous measurement, i.e. the set of voltage measure-
ments obtained from various electrodes at one single instant of time, whereas
measurements of the EEG clearly have temporal structure.

Recently, temporal constraints have been taken into consideration for var-
ious applications related to inverse problems. For example, in the analysis of
electrocardiograms (ECG) an algorithm for solving large-scale least squares
problems based on multiple constraints, including explicit spatial and tempo-
ral constraints, has been proposed (Brooks et al. 1999). For the reconstruction
of current distributions in the EEG/MEG inverse problem, other algorithms
for solving the same large-scale least squares problem as mentioned above have
been developed (Schmidt et al. 2001; Schmidt and Louis 2002a; Schmidt and
Louis 2002b).

As another way of incorporating temporal constraints into the inverse prob-
lem, the state space representation has been employed in the analysis of data
obtained by Electrical Impedance Tomography (EIT) and Single Photon Emis-
sion Tomography (SPET) (Karjalainen et al. 1997; Kaipio et al. 1999; Vauhko-
nen et al. 2001) and in the analysis of the geodetic data (Segall and Matthews
1997; McGuire and Segall 2003). The state estimation has been done by the
use of (extended) Kalman filtering and Kalman smoothing.

In this thesis, the inverse problem of the EEG will be also formulated as
the state estimation problem by considering time-dependent EEG measure-
ments as a result of current sources evolving according to some dynamics. In
the state space representation, the dynamics can be explicitly expressed as
the transition matrix or function in the system equation. The spatio-temporal
constraints can be expressed by combination of the model of the dynamics and
the covariance structure of the system noise. In particular the inverse prob-
lem formulated in the state space representation would be referred to as the
dynamical inverse problem.

As specific features of the EEG dynamical inverse problem, we can men-
tion two points; the first is that there is not any known model describing the
dynamics as well as the system noise, and the second is that the dimension of
the state, corresponding to the number of voxels, is too high to directly apply
the Kalman filtering algorithm.

So as to overcome the first point, exploration of the dynamics would be
emphasized according to the established procedures of statistical modelling, i.e.
by assuming a class of parametric models for the dynamics and comparing these
model using the statistical criterion. Although the temporal constraints, as
used in these studies so far, refer mainly to the aspect of temporal smoothness,
it is important to explore models of the dynamics because a better model would
lead to not only improved inverse solutions as well as the expression for time
varying phenomenon of the sources.

As to the second point, three approximate filtering algorithms will be pro-
posed as alternatives of the ordinal Kalman filtering algorithm; the recursive
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penalized least squares (RPLS) method, observable projection Kalman filter-
ing and partitioned (spatio-temporal) Kalman filtering. All the algorithms
approximate covariance matrices of the filtered and predicted states in the
different ways; in the RPLS method, the previous filtered state variance is
neglected, in observable projection Kalman filtering, the projection of the fil-
tered and predicted matrices onto a subspace defined by the singular value
decomposition (SVD) of the observation matrix (the lead field matrix) is uti-
lized, and in partitioned (spatio-temporal) Kalman filtering, the elements in
the near diagonal part of the filtered and predicted matrices are utilized.

Using both the simulation studies, the validity of the state estimation meth-
ods will be demonstrated. The outlined framework of exploring the dynamics
will also be shown for the real data of alpha wave.

1.2 Organization of Part I
This part I is organized as follows. In Chap.2, previous studies of the forward
problem and the inverse problem are reviewed. In Chap.3, detailed property
of an important class of the inverse solution, called the weighted L2 mini-
mum norm solution (WMN), is discussed. The use of ABIC for estimating
the regularization parameter is proposed. In Chap.4, after the definition of
the dynamical inverse problem, an appropriate way of incorporating general
spatio-temporal constraints is introduced, referring to the study of Schmidt
et al. 2001. The state space representation of the dynamical inverse problem
is presented. Then the solution of the dynamical inverse problem can be ob-
tained by using one of three approximations of Kalman filtering proposed in
Chap.5. The simulation studies and the application to the real data will be
demonstrated in Chap.6 followed by the concluding discussion of the part I.



Chapter 2

Forward problem and Inverse
problem

The source localization problem consists of two problems; the forward
problem and the inverse problem. Mathematically the source localization
problem in EEG can be summarized by the equation,

vvv = F(�r,�j) + εεε

where vvv, a vector of size Ne × 1, is the potential at the Ne electrodes, �r and
�j are the source location and moment, εεε is the additive noise, and F is the
function linking the source (�r,�j) and the potential vvv. The function F is the
solution of the forward problem and depends only on the head model adopted
(in principle). For multiple sources defined by �ri and �ji (with i = 1, · · · , Ni),
the source localization problem is written as

vvv =

Ni∑
i=1

F(�ri,�ji) + εεε. (2.1)

The inverse problem is consist of the inference about (�ri,�ji) from the potential
vvv and known F .

In this chapter, various methods proposed to solve the forward problem
and the inverse problem of EEG are reviewed briefly. In the literature (Baillet
and Mosher 2001), this topic has been reviewed compactly.

2.1 Forward problem
The EEG forward problem can be stated as follows: given the positions, ori-
entations and magnitudes of dipole current sources, as well as the geometry
and electrical conductivity of the head volume, calculate the distribution of the
electrical potential on the surface of the head (scalp).



8 Forward problem and Inverse problem

Figure 2.1: The piecewise homogeneous volume conductor model of the head.

For the biological signals of interest in EEG, we can assume the time-
derivatives of the associated electric field are sufficiently small that they can
be ignored in Maxwell’s equations. Under this quasi-static assumption, the for-
ward problem can be described by Poisson’s equation for electrical conduction
in the head,

∇ · (σ∇VVV ) = ∇ · JJJp, in Ω (2.2)

and Neumann boundary conditions on the scalp,

σ(∇VVV ) ·nnn = 0, on ΓΩ (2.3)

where σ is a conductivity tensor and JJJp is the primary current which is the
quantity of interest in neuroscience. The head volume and the surface of the
head are denoted by Ω and ΓΩ, respectively and the unknown VVV is the electrical
potential created by the distribution of primary current inside the brain.

The most commonly used head model (i.e. the geometry and electrical
conductivity of the head) assumes that it is made up of a set of nested concen-
tric volumes, each with homogeneous and isotropic conductivity. Under this
assumption, Poisson’s equation (2.2) will be simplified:

σi∆VVV = ∇ · JJJp, in Ωi (2.4)

with the boundary conditions:

σi
∂VVV i

∂nnn
= σi+1

∂VVV i+1

∂nnn
, on Si (2.5)

VVV i = VVV i+1, on Si (2.6)

where Ωi denote the volume of ith medium, Si denotes the surface between
the volumes Ωi and Ωi+1, σi and VVV i denote the conductivity and potential in
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the volume Ωi, respectively. Using Green’s second identity, we can obtain a
surface integral equation for VVV (�r) (see Chapter 2 of Phillipse 2001 for details),

σj+1 + σj

2
VVV (�r) = VVV ∞ +

1

4π

∑
i

(σi+1 − σi)

∫
Si

VVV i(�r
′)

�r − �r′

||�r − �r′||3 · dS ′, �r ∈ Sj

(2.7)

where we have assumed all surfaces are smooth, and VVV ∞ is the primary poten-
tial (i.e. the solution for the infinite homogeneous medium due to the primary
current JJJp) obtained as

VVV ∞ =
1

4π

∫
Ω

JJJp(�r′) · �r − �r′

||�r − �r′||3d�r′.

Equation (2.7) is a explicit relationship between the primary current JJJp and
the surface potential on VVV . In the case of highly symmetrical geometry such
as spheres, an analytical solution is possible (Ary et al. 1981; deMunck and
Peters 1993; Riera and Fuentes 1998). For general geometry, however, this
integral equation can not be solved in a closed-form. Hence the numerical
method such as boundary elementary method (BEM) is required for this pur-
pose (Geselowitz 1967; Sarvas 1987; Schlitt et al. 1995; Mosher et al. 1999).
Note that the integral equation Eq.(2.7) has been derived with the piecewise
homogeneous and isotropic conductivity assumptions. Even without these as-
sumptions, the partial differential equation, Poisson’s equation (2.2) can be
solved numerically by finite element method (FEM) (Tong and Rosettos 1976;
Awada et al. 1997; Klepfer et al. 1997) or finite difference method (FDM)
(Rosenfeld et al. 1996; Salheen and Ng 1997) for general geometry and elec-
trical conductivity of the head volume, though these methods demand higher
computational cost and may cause higher numerical error.

2.2 Inverse problem
The general EEG inverse problem can be stated as follows: given a set of
electric potentials from discrete sites on the surface of the head and associated
positions of those measurements as well as the geometry and conductivity of
the different regions within the head, calculate the locations, orientation and
magnitudes of the electric current sources within the brain.

The difficulty of the attempt to solve this inverse problem arises from the
fact that the EEG observations do not contain a sufficient amount of infor-
mation to precisely reproduce these sources. For this reason, the solution of
this inverse problem will be non-unique, i.e. there will be an infinite num-
ber of possible inverse solutions consistent with the measurements given. In
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order to identify a unique solution, we have to employ additional informa-
tion in the guise of physiological or physical knowledge about the sources. In
mathematical terms, this corresponds to imposing additional constraints onto
the solution space. Currently two common approaches have been employed
for solving inverse problems; ’dipole method’ and ’distributed linear solution’
approach.

2.2.1 Dipole method

This approach is to consider that EEG measurements are generated by a rela-
tively small number of focal dipole, each of which can be modeled as a single
fixed dipole or re-oriented dipole (Scherg and Ebersole 1994). The idea is
to render the inverse problem overdetermined by considering fewer unknown
parameters than independent measurements available. The locations, orien-
tations and strengths of these current dipoles, six parameters in all, can be
estimated by minimizing the difference between the predicted and actual EEG
measurements;

E(�r1, · · · , �rNi
,�j1, · · · ,�jNi

) = ||vvv −
Ni∑
i=1

F(�ri,�ji)||2, (2.8)

where Ni is the number of dipoles assumed, �ri,�ji is the location and the moment
(the orientation and the strength) of the ith dipole, respectively. The function
F is obtained by solving the forward problem. This minimization requires
solving the forward problem for every possible configuration of dipoles. Thus
the time required to solve the optimization problem grows exponentially with
the number of dipoles, and the global optimum can be found only for models
involving few dipoles. In all dipole methods, the solution depends heavily on
the number of dipoles assumed but, in general, the actual number of dipoles
cannot be determined a priori.

2.2.2 Distributed linear solution

This approach is based on a discretization of brain volume into a set of voxels,
each of which is considered to be the location of current dipoles. Because the
location of each current dipoles is now fixed, Eq.(2.1) becomes an underdeter-
mined but linear problem,

vvv = Kjjj + εεε (2.9)

where where the vector jjj = (�j′1, · · · ,�j′Nj
)′ represents (the strength and orien-

tation of) the current dipoles at all the Nj locations, where �ji = (jx,i, jy,i, jz,i)
encodes both orientation and strength of the current dipole on the ith voxel
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(therefore the dimension of jjj is three times of the number of voxels (denoted
by Ns)). The known matrix K of size Ne×Ns is the lead field matrix linking
the current sources jjj to the electrical potential vvv. In order to obtain a unique
solution, various constraints have been suggested.

Weighted L2 Minimum Norm

One approach of restricting the solution space of the current vector jjj is to
impose a constraint onto the current vector jjj directly. The weighted minimum
L2-norm (denoted by WMN) solution can be obtained by solving a constrained
least squares problem,

{min
jjj

jjj′Wjjj, under constraint: vvv = Kjjj}. (2.10)

for any given positive definite matrix W of size Ns × Ns. The weight matrix
W determines property of the solution, which is given by:

ĵ̂ĵj = Tvvv (2.11)
T = W−1K′[KW−1K′]+

where [KW−1K′]+ denotes the Moore-Penrose pseudoinverse of KW−1K′. Be-
cause the solution (2.11) satisfies the measurement equation vvv = Kjjj exactly,
the solution is not robust to the measurement contaminated by observation
noise. For avoiding this effect as well as for numerical stabilization, we can
consider the following regularized problem,

min
jjj

{||vvv − Kjjj||2 + λ2jjj′Wjjj}. (2.12)

where λ is the regularization parameter, which make a balance between obser-
vation fitting and the side constraint. Then the solution of this problem can
be provided as:

ĵ̂ĵj = (K′K + λ2W )−1K′vvv

or
ĵ̂ĵj = W−1K′(KW−1K′ + λ2I)−1vvv.

The WMN solution includes various kind of inverse solutions, corresponding
to various choice of the weight matrix W .

• The minimum norm solution corresponds to the case, W = INs

(Hämäläinen and Ilmoniemi 1984). Thereby the solution with the mini-
mum power can be obtained.

• The ’LOw REsolution brain electromagnetic TomogrAphy’ (LORETA)
method corresponds to the case, W = L′L, (Pascual-Marqui et al. 1994).
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The matrix L, called (3D-discretized) Laplacian matrix, is defined by:

[M ]ij =




6 (i = j)

−1 (j is a neighbor of i)

0 (otherwise)

L =
1

6
(M ⊗ I3) (2.13)

The ith row vector of L acts as a discrete differentiating operator by
forming differences between the nearest neighbors of the ith voxel and
ith voxel itself (i.e. the spatial second differencing operator). Thereby
the solution with the maximum spatial smoothness can be obtained.
In the literature Pascual-Marqui 1999, this solution was reported to be
able to overcome the incapability of correct localization in 3-dimensional
solution spaces which had been observed for the minimum norm solution.

• The column weighted minimum norm solution corresponds to the case,
W = Ω. The matrix Ω is a diagonal matrix with diagonal elements,

Ωii = kkk′
·ikkk·i,

where kkk·i is the ith column vector of the lead field matrix K. This
column normalization can be physically interpreted as the equal size of
contribution to measurements from all the sources (Goronidnitsky and
Rao 1997).

• Another choice of a diagonal weight matrix is possible by combining the
information from another modality such as fMRI (Phillips et al. 2002)

In the next chapter, detailed topics of this WMN solution will be further
discussed.

Optimal Resolution

Any linear inverse solution can be written in the form,

ĵ̂ĵj = Tvvv

where a matrix T of size Ns × Ne is the inverse operator, which we want to
find out. Substituting the forward equation (2.9) into this equation and taking
expectation of both sides, we obtain

E(̂ĵĵj) = TKjjj. (2.14)

The matrix R ≡ TK in Eq.(2.14), which is referred to the resolution matrix
describes how the estimated current source vector ĵ̂ĵj is reproduced by the true



2.2 Inverse problem 13

current source vector jjj. In the ideal case R = INs, the estimate can completely
reproduce the true source, however, this case could never happen because the
rank of the resolution matrix is far from the full rank. There have been several
studies of finding out an inverse operator T based on the optimal resolution
matrix (Backus and Gilbert 1968; Grave de Peralta Menendez et al. 1997).
The method of Backus-Gilbert is reviewed here.

The linear inverse solution at the uth voxel is:

ĵu = ttt′uvvv (2.15)

where ttt′u is the uth row of T , a vector of size 1 × Ne. Substituting Eq.(2.9)
into Eq.(2.15) and taking expectation gives:

E(ĵu) = rrr′ujjj (2.16)

where:

rrr′u = ttt′uK (2.17)

corresponds to the uth row vector of the resolution matrix R. The vector rrr′u,
called "averaging kernel" contains information about how the current estimates
at uth voxel is influenced by all possible sources. Since it is preferable property
for the averaging kernel rrr′u to have higher amplitude on the nearby-voxels of
u, we form some measure of the width of rrr′u such as,

Au ≡
Ns∑
s=1

r2
usd

2
us

= rrr′udiag
(
d2

u1, · · · , d2
uNs

)
rrru

= ttt′uWutttu (2.18)

where rus is the sth element of the vector rrr′u, and dus is the Euclidian distance
between voxels u, s (defined by ||�ru − �rs||2, where �rv is the position of a voxel
v), and Wu is given by

Wu = K · diag
(
d2

1s, · · · , d2
uNs

) · K′. (2.19)

We can also form a measure of the stability from variance of the estimate
ĵu in Eq.(2.15) as

Bu = Var(ĵu) = ttt′uVar(vvv)tttu = ttt′uCεεεtttu (2.20)

where Cεεε ≡ Var(εεε) is the observation noise covariance matrix.
Finally, the demand that rrr′u has unit area, leads to the constraint

Ns∑
s=1

ru,s = tttukkk·∗ = 1 (2.21)
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where kkk·∗ = (

Ns∑
s=1

K1s, · · · ,

Ns∑
s=1

KNes) is a vector of size Ne × 1.

The Backus-Gilbert method consists of finding tttu which minimize

Au + λBu = ttt′u(Wu + λCεεε)tttu (2.22)

for some selected parameter λ, subject to the constraint tttukkk·∗ = 1. The mini-
mization problem has explicit analytic solutions

tttu(λ) =
[Wu + λCεεε]

−1kkk·∗
kkk′·∗[Wu + λCεεε]−1kkk·∗

(2.23)

in terms of the parameter λ, and these different solutions, when combined
with the data vvv using Eq.(2.15), give different estimates ĵu(λ). It should be
emphasized that the tttu(λ) we obtain gives us the estimate at a single voxel.
This means that in the simplest version of the Backus-Gilbert method we must
perform the inversion for each voxel u. Some properties of the inverse solution
via this method has been discussed particularly for the EEG inverse problem
(Pascual-Marqui 1999).

Selective Minimum Norm

In the WMN method, a constraint based on L2 norm is imposed on the current
vector jjj. Instead of employing a L2 norm constraint, the inverse solution based
on a L1 norm constraint has been proposed by Matsuura and Okabe 1995; They
call "Selective Minimum Norm" (SMN) solution. The solution can be obtained
by solving the following minimization problem,

minimize
Ns∑
u=1

|ju|

subject to Kjjj = vvv. (2.24)

They have optimized this minimization problem by linear programming. As a
prominent feature of this method, the solution vector obtained can be sparse.
This means that focal current sources can be obtained without any assumption
about the number of sources using the distributed source model. Note that
the solution obtained from the minimization problem (2.24) is sensitive to
the observation noise because of exact satisfaction of the observation. The
solution allowing some observation noise has been also developed in Matsuura
and Okabe 1996.

Note that in the statistical literature, this sparse property of the solution
obtained from the least squares problem with a minimum L1 norm penalty has
been discussed in the context of shrinkage estimators of the regression analysis
(Tibshirani 1996) and some efficient algorithms for solving this problem have
been developed (Osborne et al. 2000; Efron et al. 2002).



Chapter 3

Weighted minimum L2-norm
solution

A class of weighted minimum L2-norm (denoted by WMN) solution is one
of the most popular method because of easiness of obtaining an analytical
solution and flexibility of imposing various spatial constraints by adjusting a
weight matrix. The detailed issues about WMN solution will be discussed in
this chapter.

3.1 SVD based solution
Given a Ns × Ns weight matrix W (assumed to have an inverse) depending
on spatial constraints, a WMN solution is obtained by minimizing a linear
mixture of a weighted norm ||Wjjj|| and the residuals of the fit according to the
observation equation. By assuming a Gaussian distribution εεε ∼ N(0, σ2Cεεε)
with a known covariance structure matrix Cεεε for the measurement noise, the
objective function becomes

E(jjj; λ) = ||vvv − Kjjj||2
C−1

εεε
+ λ2||Wjjj||2. (3.1)

where the parameter λ, called the regularization parameter expresses the bal-
ance between fitting the model and the prior constraint of minimizing ||WJJJ||.
Minimization of this objective function for a given λ provides the WMN solu-
tion as

ĵ̂ĵj = (K′C−1
εεε K + λ2W ′W )−1K′C−1

εεε vvv. (3.2)

The computation of Eq.(3.2) is demanding due to the need to inverse Ns ×Ns

matrix. An amount of computation can be reduced by further simplification of
Eq.(3.2) by means of singular value decomposition (SVD) of K̄ ≡ C

−1/2
εεε KW−1:

K̄ = USV ′, (3.3)
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where U and V are a Ne ×Ne matrix and a Ns ×Ne matrix, respectively, and
S is a Ne ×Ne diagonal matrix with the singular values si. Then, Eq.(3.2) can
be arranged as follows,

ĵ̂ĵj = W−1(K̄′K̄ + λ2INs)
−1K̄′C−1/2

εεε vvv.

= W−1 1

λ2
K̄′(

1

λ2
K̄K̄′ + INe)

−1C−1/2
εεε vvv

= W−1V S ′U ′(U(S2 + λ2INe)U
′)−1C−1/2

εεε vvv

= W−1V diag
( si

s2
i + λ2

)
U ′C−1/2

εεε vvv. (3.4)

In the arrangement from the first to the second line, the identity,

(V −1 + H ′R−1H)−1H ′R−1 = V H ′(HV H ′ + R)−1

is employed (see p.85 of Kitagawa and Gersh 1996 in detail). This expression
can be computed more efficiently than Eq.(3.2).

3.2 Bayesian interpretation
It is well known that penalized least squares problems can be interpreted from
the view of Bayesian inference (Kitagawa and Gersh 1996). Dividing the right-
hand side of Eq.(3.1) by −2σ2 and employing exponential yields

exp
{
− 1

2σ2
||vvv − Kjjj||2

C−1
εεε

}
· exp

{
− 1

2

λ2

σ2
||Wjjj||2

}
(3.5)

This equation corresponds to a posterior distribution p(jjj|vvv) in the case that

likelihood : p(vvv|jjj) ∼ N(Kjjj, σ2Cεεε) (3.6)

prior distribution : p(jjj) ∼ N(0,
σ2

λ2
(W ′W )−1). (3.7)

The WMN solution in Eq.(3.1) corresponds to MAP(Maximum A Posterior)
estimates of Bayesian inference.

Eqs.(3.6),(3.7) can be represented by two following equations:

vvv = Kjjj + εεε εεε ∼ N(0, σ2Cεεε) (3.8)

Wjjj = ηηη ηηη ∼ N(0,
σ2

λ2
I). (3.9)

where εεε and ηηη are uncertainty of observation (i.e observation noise) and prior
knowledge, respectively. This form can be considered as an special example of
state space representation. As will shown in the latter chapter, the state
space representation gives a framework to formulate both instantaneous and
dynamic inverse problems in an unified form.



3.3 Estimation of the regularization parameter 17

3.3 Estimation of the regularization parameter

The regularization parameter λ should be chosen in an objective way, because
the WMN solution will depend sensitively on this parameter. Various methods,
such as Generalized Cross Validation ("GCV") criterion (Wahba 1990) and L-
curve method (Hansen 1992; Hansen 1994) has been employed for this purpose.
In this work we propose employing ABIC (Akaike 1980a; Akaike 1980b) for
estimating this parameter, because this criteria can be applied not only for
selecting the regularization parameter but also for the model comparison (it
is even possible to compare solutions of dynamical and instantaneous inverse
problems). In this section L-curve, GCV and ABIC will be briefly reviewed or
introduced for WMN solutions.

3.3.1 L-curve

Having realized that the regularization parameter λ controls the balance be-
tween the residual norm ||vvv − Kjjj|| and the solution norm ||Wjjj||, it is quite
natural to plot points

(log ||vvv − Kjjjλ||, log ||Wjjjλ||)

for all valid regularization parameters. Here subscript λ is put on jjj in order to
emphasize that the solution jjj depends on λ. The resulting curve is called ’L-
curve’, because it turns out that the L-curve, when plotted in a log-log scale,
has a characteristic L-shaped appearance with a distinct corner separating the
vertical and the horizontal parts of the curve. The regularization parameter λ
is chosen so that the point (log ||vvv−Kjjjλ||, log ||Wjjjλ||) is located on the corner
point of L-curve or the curvature of L-curve has a maximum value with respect
to λ. The discussion of detailed properties of L-curve has appeared in Hansen
2000.

3.3.2 GCV

Cross Validation (CV) is a well-known technique to construct a certain predic-
tive criteria when estimating the hyperparameters. In this technique, firstly
a portion of the samples is used for estimating the parameters and then the
remaining portion is used for calculating prediction error. The minimization of
the prediction error with respect to the hyperparameters gives the estimation
of the hyperparameters.

It has been shown that the value of this prediction error can be derived
in a closed form for the linear least squares problems and this is generalized
to so-called the generalized cross validation (GCV) (Wahba 1990). GCV is
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defined for the WMN solution as follows:

GCV(λ) =
||(INe − B(λ))C

− 1
2

εεε vvv||2
{tr(INe − B(λ))}2

(3.10)

where
B(λ) = C

− 1
2

εεε K(K′C−1
εεε K + λ2W ′W )−1K′C

− 1
2

εεε .

Numerator and denominator of GCV criteria can be regarded as representing
variance of the estimated observation error and bias resulting from the regu-
larization term, respectively. By minimizing GCV a value for λ is obtained
which achieves a compromise between these two quantities. In practice, GCV
can be evaluated by applying the SVD as mentioned above:

INe − B(λ) = U(I − S(S ′S + λ2INs)
−1S ′)U ′.

Consequently, GCV can be expressed:

GCV(λ) =

Ne∑
i=1

( λ2

λ2 + s2
i

ṽi

)2

( Ne∑
i=1

λ2

λ2 + s2
i

)2
(3.11)

where ṽi is the ith component of the vector U ′C−1/2
εεε vvv and again si is ith

diagonal element of S. This is the expression to be minimized.

3.3.3 ABIC

ABIC is the modification of AIC (Akaike 1973) to the empirical Bayesian
framework as defined by

ABIC = −2L(II)(θ) + 2N,

where N is the number of the hyperparameters θ in the model and L(II)(θ) is
the log-likelihood of the hyperparameters in the context of empirical Bayesian
inference, called the type-II log-likelihood or the marginal log-likelihood. In the
case that there are unobservable variables in the model, the type-II likelihood
is obtained by marginalizing the joint distribution with unobservable variables:

L(II)(θ) = log

∫
p(xxx,yyy; θ)dyyy

= log

∫
p(xxx|yyy; θ1)p(yyy; θ2)dyyy. (3.12)

where xxx are the observable and yyy the unobservable variables; θ = (θ1, θ2) are
hyperparameters to be estimated.
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In the case of WMN solutions, using Bayesian interpretation (3.6),(3.7)
and SVD of K̄ (3.3), the type-II log-likelihood can be simplified analytically
as follows (see Appendix A for detailed calculation),

−2L(II)(σ, λ) = Ne log σ2 +
Ne∑
i=1

log
s2

i + λ2

λ2
+

1

σ2

Ne∑
i=1

ṽ2
i

λ2

s2
i + λ2

(3.13)

where ṽi is the ith component of the vector U ′C−1/2
εεε vvv. Here a constant term

has been ignored in Eq.(3.13). ABIC of the WMN solution is expressed:

ABIC(σ, λ) = Ne log σ2 +
Ne∑
i=1

log
s2

i + λ2

λ2
+

1

σ2

Ne∑
i=1

ṽ2
i

λ2

s2
i + λ2

+ 2N. (3.14)

The regularization parameter λ can be obtained by minimizing ABIC (or
equivalently -2 times type-II log-likelihood). Differentiating the right side of
Eq.(3.14) by σ2, the estimate of σ2 can be obtained as

σ̂2 =
1

Ne

Ne∑
i=1

λ2

s2
i + λ2

ṽ2
i . (3.15)

Substituting (3.15) into (3.14), the regularization parameter λ can be estimated
by numerical minimization of the function

M′(λ) = Ne log σ̂2 + Ne +

Ne∑
i=1

log
s2

i + λ2

λ2
+ 2N. (3.16)

3.3.4 Remarks

Here are a few remarks on estimation of the regularization parameter λ ob-
tained from ABIC and GCV from the author’s little experience. GCV often
has a very sharp curve with respect to λ around the minimizer whereas ABIC
shows rather flat curve. On the other hands, GCV sometimes has no minimizer
whereas ABIC almost always has the minimizer. Hence GCV is said to be more
sensitive to λ than ABIC but less robust than ABIC. When both minimizer
exist, the agreement between these two estimates are often observed. The au-
thor recommends to use ABIC because of its robustness and its availability for
model comparison.

3.4 Posterior variance
Interval estimates for WMN solutions can be easily obtained from the posterior
distribution (Eq.(A.3) in Appendix A) as

p(jjj|vvv) ∝ exp
{
− 1

2σ2
E (̂ĵĵj; λ)

}
· exp

{
− 1

2σ2
(jjj − ĵ̂ĵj)′(K′C−1

εεε K + λ2W ′W )(jjj − ĵ̂ĵj)
}
.
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Therefore, the posterior variance can be obtained as

Var(jjj|vvv) = σ2(K′C−1
εεε K + λ2W ′W )−1

=
σ2

λ2

{
(W ′W )−1 − W−1V diag

( s2
i

s2
i + λ2

)
V ′W−1

}
. (3.17)

The inverse formula (p.85 of Kitagawa and Gersh 1996)

(V −1 + H ′R−1H)−1 = V − V H ′(HV H ′ + R)−1HV

and Eq.(3.3) are employed. In Eq.(3.17), the first term can be interpreted as
prior variance (i.e. variance before any observation) and the second term can
be interpreted as the amount of variance reduction due to the observation.
Unfortunately the computation of this equation is impracticable for the size
of our application (Ns ≥ 10000), because the first term of Eq.(3.17) could be
a Ns ×Ns dense matrix which requires (temporal) huge memory, for example,
800Mb in our typical application. Instead, the posterior variance of Wjjj and
the ith diagonal elements of that can be obtained as follows:

Var(Wjjj|vvv) =
σ2

λ2

{
INs − V diag

( s2
i

s2
i + λ2

)
V ′
}
, (3.18)

and

Var(wji|vvv) =
σ2

λ2

(
1 −

Ne∑
j=1

V 2
ij

s2
j

s2
j + λ2

)
, (3.19)

where wji and Vij are the elements of Wjjj and V , respectively. Now these
elements are feasible to keep in temporal memory.

In the literature (Pascual-Marqui 2002), Pascual has introduced another
way to calculate the variance of the estimate ĵ̂ĵj. His derivation is summa-
rized as follows. Sjjj, Svvv, Sεεε and Sĵ̂ĵj denote covariance matrices of jjj,vvv, εεε and ĵ̂ĵj,
respectively. From vvv = Kjjj + εεε,

Svvv = KSjjjK
′ + Sεεε (3.20)

is obtained. Since the estimate ĵ̂ĵj is given by

ĵ̂ĵj = (K′S−1
εεε K + S−1

jjj )−1K′S−1
εεε vvv

= SjjjK
′S−1

vvv vvv (3.21)

taking the variance of both-hand side of Eq.(3.21) leads to

Sĵ̂ĵj = SjjjK
′S−1

vvv · Svvv · S−1
vvv KSjjj

= SjjjK
′S−1

vvv KSjjj . (3.22)
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This final expression (3.22) is employed as the variance of the estimate ĵ̂ĵj by
Pascual. On the other hand, substituting Sjjj = σ2

λ2 (W
′W )−1 and Sεεε = σ2Cεεε

into Eq.(3.17), the posterior variance can be derived as

Var(jjj|vvv) = (KS−1
εεε K′ + Sjjj)

−1

= Sjjj − SjjjK
′S−1

vvv KSjjj. (3.23)

Here from the second to the third equation the above-mentioned inverse for-
mula is used. Note that this equation can be also derived using the formula of
the multivariate normal distribution (see appendix B):

Var(jjj|vvv) = Var(jjj) − Cov(jjj,vvv)Var(vvv)−1Cov(vvv, jjj).

Comparing Eq.(3.23) with Eq.(3.22), the Pascual’s variance is consistent with
the second term of the posterior variance. Hence it is not so obvious whether
the variance as proposed by Pascual can be justified or not.





Chapter 4

Dynamical Inverse Problem

In the previous chapters, the notion of forward and inverse problems are in-
troduced and various methods to solve inverse problems are reviewed. In this
chapter, firstly dynamical inverse problems is defined in contrast to in-
stantaneous inverse problems, then the state space representation is intro-
duced as a mathematically suitable formulation of dynamical inverse problems.

4.1 Definition

As mentioned in the previous chapters, the EEG inverse problem is defined as
the task to estimate the primary current density jjj from given measurement
vvv. In particular, the inverse problem as formulated in Eq.(2.9) is called ’in-
stantaneous inverse problems’ or ’static inverse problems’, because only the
measurement at one single time point is used or no temporal relation is taken
into consideration for the estimation of jjj .

An explicit discussion about the definition of ’dynamic(al) inverse prob-
lems’ was first appeared in Schmidt and Louis 2002a. According to their
definition,

• the properties jjj of the examined object do not change during the measur-
ing process. Thus, we have to solve

Kjjj = vvvi for all i

This is called a static inverse problem.

• the examined object is allowed to change during the measuring process
and we have to solve

Kjjji = vvvi for all i

This is called a dynamic inverse problem.
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Since they employed ’dynamic inverse problem’ for broadly describing any
time-varying situation, but without reference to the particular case of varia-
tions in time which are the result of an actual dynamical evolution, the term
’nonstationary inverse problems’ seems to be more suitable for their definition.

In this thesis, the term ’dynamical inverse problems’ is used for a little
more restricted situation as follows:

• Solutions of dynamical inverse problems have to be in agreement with
two sets of information, which is represented by

– the observation equations for all time points considered
vvvt = Kjjjt + εεεt (t = 1, 2, · · · ), and

– some prespecified dynamics about jjjt, jjjt−1, jjjt−2, · · · .

• Solutions of ’instantaneous inverse problems’ have to be in agreement
with two sets of information, namely

– the observation equation vvv = Kjjj + εεε, and

– prior knowledge about jjj.

In our definition, an explicit relationship for time course of jjjt is assumed and
this assumption enable us to make mathematical formulation of the problem
much easier as will mention in the next section.

In the case of the instantaneous inverse problem, the solution only reflects
an instantaneous observation vvvt, whereas in the case of the dynamical inverse
problem it reflects a sequence of temporally successive observations vvvt, vvvt−1, · · ·
such that some dynamics of the generators is imposed. In other word, as
shown schematically in Fig.4.1, the dependence of the observation vvvt on the
evolution of jjjt is explicitly considered in the dynamical inverse problem. If the
evolution of jjjt does not follow any dynamics, the dynamical inverse problem
becomes equivalent to the instantaneous problem, i.e. the dynamical problem
is a generalization of the instantaneous problem.

4.2 Formulation

The dynamical inverse problem in the penalized least squares form and in
the state space representation is discussed here. In order to consider general
spatio-temporal constraints, we will choose to formulate the dynamical inverse
problem in the state space representation; the dynamical inverse problem will
be regarded as the state estimation problem.
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Figure 4.1: Schematic comparison between the instantaneous inverse problem (top) and
the dynamical inverse problem (bottom). Sources within brain and EEG observations are
represented by rectangles and circles, respectively. Arrows represent the flow of information,
as assumed by the underlying model.

4.2.1 Penalized least squares form

The objective function (3.1) of WMN method represents an example of the
penalized least square (PLS) method, where the lack of spatial smoothness is
penalized. It is a very convenient feature of the PLS method that we can obtain
a solution with desired properties simply by adding suitable penalty terms.
We can employ this virtue in order to extend a type of weighted minimum
norm solutions such that the resulting solutions will also have the property of
improved temporal smoothness.

A pioneering work of extending a instantaneous inverse problem employing
spatial and temporal constraints has been introduced by Schmidt et al. 2001 for
EEG inverse problems. They first considered a objective function as follows:

E(jjj1, · · · , jjjT ) =

T∑
i=1

(||vvvt − Kjjjt||2 + λ2
1||Wjjjt||2) +

T∑
t=2

λ2
2||jjjt − jjjt−1||2 (4.1)

where a weight matrix W is an identity matrix or Laplacian matrix according
to corresponding a spatial constraint. The third term represents a penalty
for temporal smoothness. By minimizing this objective function, they could
obtain the solution having properties of temporal and spatial smoothness (in
the case of W = L). In practical application, after transforming Eq.(4.1) to
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the next objective function,

E(JJJ) = ||VVV − KTJJJ ||2 + λ2
1||WTJJJ ||2 + λ2

2||(D ⊗ INs)JJJ ||2 (4.2)

they introduced the normal equation for a large-scale least squares problem,

(K′
T KT + λ2

1W
′
T WT + λ2

2(D
′D ⊗ INs))JJJ = K′

TVVV (4.3)

where

JJJ = (jjj1, · · · , jjjT )′

VVV = (vvv1, · · · , vvvT )′

KT = IT ⊗ K, WT = IT ⊗ W

D =




1 −1 0 · · ·
0 1 −1

. . .
... . . . . . . . . .
... 1 −1


 .

Note that the size of the matrices KT , WT , D′D⊗INs is usually huge in the EEG
application, for instance, KT is a matrix of size (T ·Ne)× (T ·Ns). In order to
solve the normal equation (4.3) without keeping the whole components of the
matrices in memory, iterative least squares methods such as the block Jacobi
method, the conjugate gradient algorithm (Schmidt et al. 2001) and the STR
(spatio temporal regularizer) procedure (Schmidt and Louis 2002a; Schmidt
and Louis 2002b) have been proposed in virtue of sparsity of the matrices.

By generalizing the objective function (4.1), we have a following form of
the objective function with temporal and spatial constraints:

E(JJJ) = u(jjj1) +
T∑

t=2

(||vvvt − Kjjjt|| + λ2
1||W1jjjt||2 + λ2

2||jjjt − f(jjjt−1)||2). (4.4)

Here W1 is a weight matrix depending on a spatial property of a solution,
f(·) are a function representing a dynamics of current sources jjjt. A function
u(jjj1) is a cost function for estimating an initial source jjj1, for example u(jjj1) =
||vvv1−Kjjj1||+λ2

1||W1jjj1||2 as in the objective function (4.1). The choice of W1 and
f(·) depends on the prior knowledge or assumptions what kind of properties
time series of sources jjjt is expected to have. For example, the above-mentioned
"model" used in Schmidt et.al. 2001 corresponds to the choice W1 = L and
f(·) = I, therefore the solution will have spatial and temporal smoothness.

Eq.(4.4) shows a way to impose both spatial and temporal constraints on
a solution. Another way of imposing two kind of constraints can be derived
by introducing a parameter µ which make a balance of two constraints inside
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one penalty term as follows,

E(JJJ) = u(jjj1) +

T∑
t=2

(||vvvt − Kjjjt|| + λ2
1||W1jjjt + µ2(jjjt − f(jjjt−1))||2)

= u(jjj1) +
T∑

t=2

(||vvvt − Kjjjt|| + λ2
1||W3(jjjt − g(jjjt−1))||2) (4.5)

where W3 = W1 + µ2I and g(·) = µ2W−1
3 f(·). The main idea of the objective

function (4.5) is to impose spatio-temporal constraints in a penalty term at
once, while to impose spatial and temporal constraints separately due to two
penalty terms is an idea of the objective function (4.4).

Two objective functions for estimating time series of sources jjjt with gen-
eral spatial temporal constraints have been introduced in this section. Min-
imization of Eq.(4.4) or (4.5) gives a corresponding solution. In the case of
a nonlinear function f(·) (or g(·)), however, the transformation to the large-
scale least squares problem is impossible. Even in the case of f(·) being a
linear function, we can not execute the iterative methods for solving the large-
scale least squares problem after the transformation unless f(·) is a diagonal
matrix whose diagonal components have the same values (i.e. dynamics with
homogeneity and no interaction between voxels).

4.2.2 State space representation

In order to solve dynamical inverse problems, more appropriate formulation is
needed because the minimization problem in the penalized least squares form
can be solved only in a few case of temporal constraints. In other words, the
penalized least squares form is too limited to obtain the solution for general
spatial temporal constraints.

In section 3.2, by viewing the objective function of the WMN method
from Bayesian statistics, the representation using random variables (state space
representation) has been introduced. The objective functions Eqs.(4.4) and
(4.5) can also be expressed by state space representation in the same way.

• The least squares form with three terms,

||vvvt − Kjjjt|| + λ2
1||W1jjjt||2 + λ2

2||jjjt − f(jjjt−1)||2 (4.6)

can be expressed by following state space representation with an ’aug-
mented’ observation equation:


[
vvvt

000

]
=

[
K

λ1W1

]
jjjt + ε̃εεt ε̃εεt ∼ N(0, σ2INs+Ne)

jjjt = f(jjjt−1) + ηηηt ηηηt ∼ N(0, τ 2INs)

(4.7)
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Here a part of the augmented observation equation corresponds to the
spatial constraint (the second term) in Eq.(4.6) and the system equation
corresponds to the temporal constraint (the third term). Note that the
covariance structure of the system noise equation in the representation
(4.7) is always an identity matrix, due to separate imposition of a spatial
and temporal constraint. This formulation has already been employed
in other fields of inverse problems (Karjalainen et al. 1997; Vauhkonen
et al. 1998).

• The least squares form with two terms,

||vvvt − Kjjjt|| + λ2
1||W3(jjjt − g(jjjt−1))||2 (4.8)

can be expressed by following ordinary state space representation:{
vvvt = Kjjjt + εεεt εεεt ∼ N(0, σ2INe)

jjjt = g(jjjt−1) + ηηηt ηηηt ∼ N(0, τ 2(W ′
3W3)

−1)
(4.9)

Here the covariance structure of system noise represents the spatial con-
straints in Eq.(4.8) and the system equation corresponds to the temporal
constraint.

Once the dynamical inverse problem is formulated in these state space repre-
sentations, to find out the solution of the dynamical inverse problem is equiv-
alent to estimating the state jjjt (i.e. the state estimation problem). In linear
Gaussian case, the optimal state estimation is possible by the algorithm pro-
posed by Kalman, so-called Kalman filtering or smoothing. In general, some
extension of Kalman filtering (extended Kalman filter or particle filter) can
be applied in order to estimate the state. Since the Kalman filter algorithm
consists of a set of recursions along time axis, we can obtain the solution even
when more flexible dynamics such as non-linear and time-varying dynamics is
taken into consideration. In contrast, the penalized least squares form has the
crucial limitation for the dynamics in transforming into the large-scale least
squares problem.

The following points are the advantage of regarding the dynamical inverse
problem as the state estimation problem:

• A solution can be obtained for wide range of dynamical models.

• The system and the observation equation in the state space represen-
tation can be interpreted intuitively, therefore the modeling, that is,
imposing spatio-temporal constraints on the solution, can be done with
flexibility and ease.

• In the recursions of Kalman filtering, likelihood can easily calculated.
The evaluation of solutions, hence, is possible by likelihood.
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Corresponding to two least squares form using multiple penalty terms and
a spatio-temporal penalty term, two types of the state space representation
(4.7),(4.9) have been also introduced. The advantage of the representation
(4.7) over the representation (4.9)) is that

• In modeling W1 and f(·) of (4.7) , the model can be easily interpreted
from view of a spatial constraint and a temporal constraint onto jjjt,
respectively, while modeling W3 and g(·) of (4.9) is not corresponding to
a spatial constraint and a spatial constraint onto jjjt.

On the other hand, the disadvantage of the representation (4.7) would be

• the cost of computation is too demanding because of high dimensionality
of the observation equation.

In applications with low dimensional state, the representation (4.7) may
be preferred, however, in the applications with high dimensional state, the
representation (4.9) will be more appropriate because the priority should be
put on the computational aspect rather than ease of the interpretation of the
model. In the latter parts of this thesis, the dynamical inverse problem will be
expressed in the representation (4.9).





Chapter 5

Dynamical Inverse Solution

As shown in the chapter 4, the dynamical inverse problem has been formulated
as the state estimation problem in the state space representation,{

vvvt = Kjjjt + εεεt εεεt ∼ N(0, σ2Cεεε)

jjjt = g(jjjt−1) + ηηηt ηηηt ∼ N(0, τ 2Cηηη)
(5.1)

The procedure of solving the state estimation problem consists of three parts;

(i) define the form of the dynamics g(·) and the noise covariance structure
Cεεε, Cηηη (Modeling).

(ii) given the model, estimate the current source jjjt (State Estimation).

(iii) evaluate solutions resulting from different models by the statistical cri-
terion (Model Comparison).

These topics are discussed in this chapter, starting from introduction of Kalman
filtering algorithm for "State Estimation". Various approximate methods for
high dimensional "State Estimation" will be proposed, followed by "Model-
ing", "Model Comparison" and discussion.

Through 5.1 to 5.4, the transition matrix At and the noise covariance ma-
trices Cεεε, Cηηη are assumed to be known; the model is represented as follows,

vvvt = Kjjjt + εεεt εεεt ∼ N(0, σ2Cεεε) (5.2)
jjjt = Atjjjt−1 + ηηηt ηηηt ∼ N(0, τ 2Cηηη). (5.3)

5.1 Kalman filtering algorithm
The well-known Kalman filtering algorithm consists of the following prediction
and filtering steps:



32 Dynamical Inverse Solution

[ Prediction]

jjjt|t−1 = Atjjjt−1|t−1 (5.4)
Σt|t−1 = AtΣt−1|t−1A

′
t + τ 2Cηηη (5.5)

[ Filter]

rrrt = vvvt − Kjjjt|t−1 (5.6)
Λt = KΣt|t−1K

′ + σ2Cεεε (5.7)
Kt = Σt|t−1K

′Λ−1
t (5.8)

jjjt|t = jjjt|t−1 + Ktrrrt (5.9)
Σt|t = (I −KtK)Σt|t−1 (5.10)

where jjjt|s ≡ E(jjjt|vvv1, · · · , vvvs) and Σt|s ≡ Var(jjjt|vvv1, · · · , vvvs) are expectation
and variance of jjjt conditional on the observations vvv1, · · · , vvvs. The innova-
tion (one step-ahead prediction error) and the innovation variance are denoted
by rrrt and Λt, respectively. By iterating the prediction step and the filtering
step for each time point t = 1, · · · , T , we could obtain the filtered estimate
jjjt|t (t = 1, · · · , T ), which is known to be the optimal estimate of jjjt based on
the observations up to current under the assumption of Gaussian noise. Fol-
lowing smoothing procedure provides the smoother estimate of jjjt, which is
based on the whole data set vvv1, · · · , vvvT :

[Fixed interval smoothing]

Bt = Σt|tA′
tΣ

−1
t+1|t (5.11)

jjjt|T = jjjt|t + Bt(jjjt+1|T − jjjt+1|t) (5.12)
Σt|T = Σt|t + Bt(Σt+1|T − Σt+1|t)B′

t. (5.13)

The derivation of Kalman filtering and smoothing can be seen in Meinhold and
Singpurwalla 1983; Kitagawa and Gersh 1996 from the view of Bayes statistics
or in Kalman 1960; Ansley and Kohn 1982 using the orthogonal projection.
Note that there are some variants of the fixed interval smoothing algorithm,
and the algorithm as has been introduced here is referred to as ’classical’ fixed
interval smoother in some literatures (de Jong 1989; Durbin and Koopman
2001).

In the case of the EEG inverse problem, the dimension of the state jjjt

is 3 times the number of voxels (in our example, around 10000), therefore
the practical application of Kalman filtering and smoothing to such a high
dimensional state vector will be very demanding (or even impossible) in terms
of computational time and memory consumption. The main difficulty results
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from the computation of each covariance matrix Σt|t of size Ns × Ns, which
requires 800M byte memory for the matrix in our typical example. In order
to overcome this difficulty it is necessary to design suitable approximations of
the standard Kalman filtering algorithm.

In the following sections, three approaches to manage this problem will be
discussed. Firstly a naive approach where only little modification of the WMN
method is needed will be introduced. We choose to call this method ’recursive
penalized least squares’ (RPLS) solution (Yamashita et al. 2002). Secondly
the Kalman filtering algorithm using projection of the covariance matrices on
an appropriate subspace will be proposed. Especially the algorithm where
the subspace can be defined by the SVD of the observation matrix K will
be derived (Yamashita and Ozaki 2003). A new approach to spatiotemporal
Kalman filtering will be also presented which mainly exploits the information
of the diagonal part of the covariance matrices (Galka et al. 2002). All of these
approximations are based on the idea how to exploit important information in
the covariance matrix without keeping the whole elements.

5.2 Recursive penalized least squares method

5.2.1 Algorithm

The algorithm of the RPLS method can be easily obtained by extending the
WMN method. We will now discuss the practical estimation procedure in
detail. An initial estimate (for t = 1) of the state jjj1 can be obtained from
approach for solving any instantaneous inverse problem. For t = 2, 3, · · · , T ,
we can obtain an estimate of jjjt by recursively solving the penalized least
squares problem

ĵ̂ĵjt = argmin
jjjt

{
||vvvt − Kjjjt||2C−1

εεε
+ λ2||jjjt − Atĵ̂ĵjt−1||2C−1

ηηη

}
(5.14)

where ĵ̂ĵjt−1 is the estimate obtained in the previous step. The solution of (5.14)
is easily obtained by

ĵ̂ĵjt = (K′C−1
εεε K + λ2C−1

ηηη )−1(K′C−1
εεε vvvt + λ2C−1

ηηη Atĵ̂ĵjt−1). (5.15)

However, direct computation of this expression is numerically impracticable
due to the need of inverting a very big matrix. Instead, we will now show a
convenient way to obtain a numerically easier accessible solution by appropri-
ate variable transformation. In addition, this transformation will demonstrate
clearly the relations between the RPLS method and Kalman filtering.

We start from the following variable transformations

ζζζt = jjjt − Atĵ̂ĵjt−1 (5.16)
rrrt = vvvt − KAtĵ̂ĵjt−1 (5.17)



34 Dynamical Inverse Solution

Here ζζζt and rrrt correspond to system noise and innovation (1-step ahead pre-
diction error), respectively. We can rewrite the objective function of Eq.(5.14)
as follows:

E(ζζζt) = ||rrrt − Kζζζt||2C−1
εεε

+ λ2||ζζζt||2C−1
ηηη

. (5.18)

Then we can obtain an estimate of jjjt by

ζ̂̂ζ̂ζt = T (λ)rrrt (5.19)
ĵ̂ĵjt = Atĵ̂ĵjt−1 + ζ̂̂ζ̂ζ t, (5.20)

where we have defined and arranged

T (λ) ≡ (K′C−1
εεε K + λ2C−1

ηηη )−1K′C−1
εεε (5.21)

= C1/2
ηηη V diag

( si

s2
i + λ2

)
U ′C−1/2

εεε . (5.22)

Here U, diag(si), V are Ne ×Ne, Ne ×Ne and Ns ×Ne matrices obtained from
the singular value decomposition (SVD) of C

−1/2
εεε KC

−1/2
ηηη , respectively (Mardia

et al. 1979). The computation of Eq.(5.22) is not as demanding as the compu-
tation of Eq.(5.15), because in Eq.(5.22) the large matrix to be inverted does
not depend on λ, such that this inversion needs only to be carried out once,
whereas in Eq.(5.15) the inversion has to be carried out repeatedly during the
process of finding an optimal value of λ. A similar remark applies to the SVD
of C

−1/2
εεε KC

−1/2
ηηη , which also needs to be computed only once, since these three

matrices are known.

In summary, the RPLS algorithm consists of the following two steps:
Given ĵ̂ĵj1, for t = 2, · · · , T

(i) calculate the innovation rrrt:

rrrt = vvvt − KAtĵ̂ĵjt−1

(ii) update the next estimate ĵ̂ĵjt:

ĵ̂ĵjt = Atjjjt−1 + T (λ)rrrt

where T (λ) = C
1/2
ηηη V diag

( si

s2
i + λ2

)
U ′C−1/2

εεε .

5.2.2 Estimation of the regularization parameter λ

The regularization parameter λ should be chosen in an objective way, because
the inverse solution will depend sensitively on this parameter. As shown in
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the previous section, various methods, such as GCV, L-curve and ABIC can
provide the objective choice of λ in the case of the WMN method.

The ABIC criterion is used for the RPLS solution, though in the following
derivation we will employ an approximation which might not be fully justified
from the theoretical view.

The exact form of type II log-likelihood for the model (5.3) is given by

L(II)(σ, τ) = log

∫
p(vvv1, · · · , vvvT , jjj1, · · · , jjjT ; σ, τ)djjj1 · · · djjjT (5.23)

where vvvt are the observable and jjjt the unobservable variables; σ, τ are hyper-
parameters and the ratio σ/τ corresponds to λ.

Even if both distributions of the observation and system noise are assumed
to be Gaussian, it is very difficult to calculate this multiple integral analytically,
therefore we will approximate Eq.(5.23) by the sum of type-II log-likelihoods
at each time point, L(II)

t (σ, τ). Since in the RPLS method we are basing the
inference (if interpreted from the Bayesian viewpoint) on p(rrrt|ζζζt; σ) and p(ζζζt; τ)
as likelihood and prior distribution, respectively (see (5.18)), the pointwise
type-II log-likelihood based on rrrt is given by

L(II)
t (σ, τ) = log

∫
p(rrrt|ζζζt; σ)p(ζζζt; τ)dζζζt. (5.24)

Then L(II) is approximated by the summation of L(II)
t (σ, τ). This approxima-

tion is reasonable, if the distribution of the innovations p(rrrt), t = 1, 2, · · · , T
can be regard as serially independent.

Since p(rrrt|ζζζt; σ) and p(ζζζt; τ) are assumed to be Gaussian, we can ana-
lytically calculate this integral and obtain (-2) times the point wise type-II
log-likelihood:

−2L(II)
t (σ, λ) = Ne log σ2 +

Ne∑
i=1

log
s2

i + λ2

λ2
+

1

σ2

Ne∑
i=1

r̃2
i,t

λ2

s2
i + λ2

(5.25)

where r̃i,t is the ith component of the vector U ′C−1/2
εεε rrrt. Here we have replaced

the parameter τ by λ = σ/τ . A constant term has been ignored in Eq.(5.25).
Then ABIC can be expressed by

ABIC(σ, λ) = TNe log σ2 + T

Ne∑
i=1

log
s2

i + λ2

λ2
+

1

σ2

T∑
t=1

Ne∑
i=1

r̃2
i,t

λ2

s2
i + λ2

+ 2N.

(5.26)

Estimates σ̂ and λ̂ can be obtained by minimizing this value and the minimum
ABIC can be employed for the model comparison. Note that this expression
is identical to Eq.(3.14) except ṽ being replaced by r̃.
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If we assume a parametric model for the dynamics At, the parameters
θθθ of the dynamics of which are unknown, need to be estimated also. This
can be done again by minimizing ABIC, as given by Eq.(5.26), but now the
innovations (1-step prediction errors) rrrt depend on these parameters, such that
ABIC(σ, λ) becomes ABIC(σ, λ,θθθ). In the implementation, this optimization
is carried out by the simplex method, as provided by the "fminsearch" function
of Matlab.

5.2.3 Relation between RPLS method and Kalman fil-
tering

The estimation procedure of RPLS method has the same structure as known
from Kalman filtering : first the innovation is calculated (Eq.(5.17)) using the
previous estimate (i.e. forming a prediction) and the current observation, then
ζζζ t is calculated (Eq.(5.19), corresponding to filtering) from the innovation. Let
jjjt−1|t−1 and Σt−1|t−1 denote the filtered state estimate and the filtered state
error variance, respectively, as provided by Kalman filtering at time t − 1.
At time t a new observation vvvt becomes available, and the state estimate is
updated according to

jjjt|t = Atjjjt−1|t−1 + KrrrK
t (5.27)

K = {K′C−1
εεε K + (σ2ct−1AtPt−1A

′
t + λ−2Cηηη)

−1}−1K′C−1
εεε (5.28)

where K denotes the Kalman gain, and the innovation rrrK
t is defined by rrrK

t =
vvvt − KAtjjjt−1|t−1. Here we denote the filtered error variance by Σt−1|t−1 =
ct−1Pt−1. In the RPLS method, the equation corresponding to Eq.(5.27) is
Eq.(5.20). Obviously, in Kalman filtering KrrrK

t is the estimator of system
noise; the corresponding estimator is given by Eq.(5.19). By comparison with
Eq.(5.21) it can readily be seen that the RPLS method becomes consistent with
Kalman filtering if ct−1 → 0. While, according to Eq.(5.28), the Kalman gain
essentially depends on three components, representing system noise variance,
observation noise variance and the uncertainty of the previous estimate, the
RPLS method explicitly depends on only two of these components, namely
system noise variance and observation noise variance.

5.3 Projection Kalman filtering

5.3.1 Algorithm

I shall introduce an approximation method of Kalman filtering by projecting
the covariance matrices on certain appropriate subspace, which is the similar
idea to the well-known dimension reduction method, Principle Component
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Analysis (PCA) in multivariate analysis. I would like to call this method
projection Kalman filtering.

A projection matrix P is defined as a matrix of size Ns×Np, where Ns 	 Np

and P ′P = INp. The first condition is for the dimension reduction and if the
column vectors of P are linear independent each other, the orthogonalization
is possible and gives the second condition without losing generality. By con-
sidering the projection of the original covariance matrices onto this space, for
example, Ct|t−1 = P ′Σt|t−1P , then the update for the projected matrices Ct|t−1

and Ct−1|t−1 can be obtained as follows,

[ Prediction ]

jjjt|t−1 = Atjjjt−1|t−1 (5.29)
Ct|t−1 = ĀtCt−1|t−1Ā

′
t + τ 2C̄ηηη (5.30)

[ Filter ]

rrrt = vvvt − Kjjjt|t−1 (5.31)
Λt = K̄Ct|t−1K̄

′ + σ2Cεεε (5.32)
Kt = PCt|t−1K̄

′Λ−1
t (5.33)

jjjt|t = jjjt|t−1 + Ktrrrt (5.34)
Ct|t = Ct|t−1 − Ct|t−1K̄

′Λ−1
t K̄Ct|t−1 (5.35)

where Āt = P ′AtP, C̄ηηη = P ′CηηηP and K̄ = KP . It is obvious that the choice of
the projection matrix P is crucial for exploiting the important information in
the filtered and predicted covariance matrices. In this thesis I shall propose to
choose the matrix P based on the SVD of the lead field matrix K.

In concrete, at first the SVD of the lead field matrix K is considered:

K = USW ′ (5.36)

where U, S, W are matrices of size Ne × Ne, Ne × Ne and Ns × Ne, respec-
tively. From the property of the SVD, W ′W = INe is satisfied. If we con-
sider a vector space spanned by the column vectors wwwi of W , that is, jjjo =∑Ne

i=1 aiwwwi, (∃i, ai �= 0), it can be easily seen that a vector jjjo satisfies

Kjjjo �= 0.

This means the current vector on this space directly makes effect on the EEG
observation through the lead field matrix K. In this sense the vector space
spanned by the column vectors wwwi of W will be referred to the space as the
observable space and can be considered to be one of the most influential
subspace. Note that the observable space is the orthogonal complement of the
kernel {jjj ∈ RNs |Kjjj = 0}, sometimes referred to as the null space.
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Motivated by this fact, here I would like to choose the matrix W as a pro-
jection matrix P , then the projection Kalman filtering algorithm becomes:

[ Prediction ]

jjjt|t−1 = Atjjjt−1|t−1 (5.37)
Ct|t−1 = ĀtCt−1|t−1Ā

′
t + τ 2C̄ηηη (5.38)

[ Filter ]

rrrt = vvvt − Kjjjt|t−1 (5.39)
Λt = U(SCt|t−1S + σ2U ′CεεεU)U ′ (5.40)
Kt = WCt|t−1SU ′Λ−1

t (5.41)
jjjt|t = jjjt|t−1 + Ktrrrt (5.42)
Ct|t = Ct|t−1 − Ct|t−1S(SCt|t−1S + σ2U ′CεεεU)−1SCt|t−1 (5.43)

where Āt = W ′AtW, C̄ηηη = W ′CηηηW , matrices of size Ne × Ne. This algorithm
is mostly constituted by the computation of matrices of size Ne ×Ne. I choose
to call this filtering algorithm observable projection Kalman filtering.

5.3.2 Derivation

In projection Kalman filtering, the expectation updating is consistent with
that of ordinal Kalman filtering whereas the variance updating is done for the
projected covariance matrix. Here the equations for the variance updating are
derived.

We assume to have a projection filtered covariance matrix Ct−1|t−1 in the
previous updating and a projection matrix P of size Ns × Np with P ′P = INp

and Ns 	 Np. Note that the relation between the projection filtered covariance
Ct|t and the full filtered covariance Σt|t = Var(jjjt|vvv1, · · · , vvvt) is given by the
equation

Ct|t = P ′Σt|tP.

As in Eq.(5.5), the prediction variance updating of ordinal Kalman filtering is
given by

Σt|t−1 = AtΣt−1|t−1A
′
t + τ 2Cηηη. (5.44)

By projecting both hand-side onto the space spanned by the column vectors
of the projection matrix P , we have

P ′Σt|t−1P = P ′AtΣt−1|t−1A
′
tP + τ 2P ′CηηηP. (5.45)

In order to obtain prediction updating of the projection covariance matrix
Ct|t−1, the full covariance matrix is approximated by

Σt−1|t−1 ≈ (P ′)−Ct|t−1P
−, (5.46)
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where P− is any pseudoinverse matrix of P . Now the Moore-Penrose pseudo
inverse matrix of P , which is equal to P ′ (P+ ≡ (P ′P )−1P ′ = P ′), is used
for P− and the substitution of resulting approximation Σt−1|t−1 into Eq.(5.45)
leads to the prediction variance updating of Ct|t−1:

Ct|t−1 = ĀtCt−1|t−1Ā
′
t + τ 2C̄ηηη. (5.47)

where Āt = P ′AtP, C̄ηηη = P ′CηηηP are the projected transition matrix and the
projected system noise covariance matrix, respectively.

In the same way, the filtered variance updating can be obtained as

P ′Σt|tP = P ′Σt|t−1P − P ′Σt|t−1K
′Λ−1

t KΣt|t−1P,

and is arranged:

Ct|t = Ct|t−1 − Ct|t−1K̄
′Λ−1

t K̄Ct|t−1. (5.48)

where K̄ = KP and

Λt = KΣt|t−1K
′ + σ2Cεεε

= K̄Ct|t−1K̄
′ + σ2Cεεε. (5.49)

When the matrix P is chosen as W of the SVD (5.36), the filtered variance
updating can be further simplified. Since

K̄ = KW = USW ′W = US, (5.50)

and

Λ−1
t = (USCt|t−1S

′U ′ + σ2Cεεε)
−1

= U(SCt|t−1S
′ + σ2U ′CεεεU)−1U ′ (5.51)

then we obtain the filtered variance updating of observable projection Kalman
filtering:

Ct|t = Ct|t−1 − Ct|t−1K̄
′Λ−1

t K̄Ct|t−1

= Ct|t−1 − Ct|t−1S
′U ′U(SCt|t−1S

′ + σ2U ′CεεεU)−1U ′USCt|t−1

= Ct|t−1 − Ct|t−1S(SCt|t−1S + σ2U ′CεεεU)−1SCt|t−1. (5.52)

Here U ′U = INe is employed.

5.3.3 Property

Here some theoretical aspects of observable projection Kalman filtering are
discussed. In this subsection the following linear model is only considered for
simplicity

vvvt = Kjjjt + εεεt εεεt ∼ N(0, σ2Cεεε) (5.53)
jjjt = Ajjjt−1 + ηηηt ηηηt ∼ N(0, τ 2Cηηη). (5.54)
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If Cηηη is a positive definite matrix, without loss of the generality, we assume
Cηηη = INs by using the prewhitening approach as will introduced in section 5.5.

Let us consider the SVD of the lead field matrix as follows:

K = USW ′
1 (5.55)

This form is same as Eq.(5.36) and U, S, W1 are uniquely determined (if all the
singular values are distinct). Then the augmented version of the SVD can be
expressed as follows:

K = U




s1

. . . 000

sNe







W1 W2




′

, (5.56)

where si is the ith diagonal element of S and W2 is a matrix of size (Ns −
Ne) × Ns which constitutes the null space {jjj ∈ RNs |Kjjj = 0}, the orthogonal
complement of W1. W2 can not be determined uniquely, however the column
vector of W2 can be constructed column by column using the Gram-Schmidt
orthonomarization. The resulting matrix WA = [ W1 | W2 ] becomes a or-
thogonal matrix, that is, W ′

AWA = WAW ′
A = I is satisfied. Note that the zero

matrix of size Ne × (Ns − Ne) is added to S, corresponding to W2.
Now we apply the similarity transformation to the current vector jjjt by W ′

A

hhht = W ′
Ajjjt,

resulting in the new state space representation for the state hhht as

vvvt = USAhhht + εεεt (5.57)
hhht = Ãhhht−1 + η̃ηηt. (5.58)

where Ã = W ′
AAWA and η̃ηηt = W ′

Aηηηt and SA = [ S | 000 ]. Here the covariance
matrix of η̃ηηt again becomes τ 2INs because WA is a orthogonal matrix. Note
that the original state jjjt can be easily obtained from hhht by jjjt = WAhhht.

Then we partition hhht according to the partition of the matrix SA, as denoted
by hhht = (hhh′

t,o,hhh
′
t,n)′. Since the matrix SA has nonzero entries only in the first

Ne columns, only the corresponding components of hhht, that is, hhht,o can make
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Figure 5.1: Schematic of equation (5.60). If there is no information flow from hhht,n to hhht,o

(i.e. Ãon = 0), the observations vvvt have no information about hhht,n.

effect on the observation:

vvvt = U
[

S | 000
]




hhht,o

hhht,n




= UShhht,o. (5.59)

Relating to the partition of hhht, the system equation (5.58) can be rewritten as
follows [

hhht,o

hhht,n

]
=

[
Ãoo Ãon

Ãno Ãnn

] [
hhht−1,o

hhht−1,n

]
+ η̃ηηt. (5.60)

If Ãon = 0 , then hhht,o = Ãonhhht−1,o + η̃ηηt,o. Therefore the components hhht,o has no
information about hhht′,n, t

′ < t, resulting in no effect of hhht′,n on the observation
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vvvt. Recall that only the component hhht,o of hhht makes effect on the observation
vvvt through the observation matrix. Intuitively speaking from the consideration
above, the component hhht,n is redundant when Ãon = 0. In other words, the
dimension of the state can be reduced to hhht,o of small dimension Ne from the
full state hhht of huge dimension Ns.

In order to consider this argument more precisely, firstly let us partition
the covariance matrices of the filtered (predicted or smoothed) state hhht and
the system noise η̃ηηt as well as the transition matrix A, corresponding to the
partition of the state hhht = (hhh′

t,o,hhh
′
t,n)′:

Ct|s =

[
Coo

t|s Con
t|s

Cno
t|s Cnn

t|s

]
, Cη̃ηη =

[
Coo

η̃ηη 000

000 Cnn
η̃ηη

]
, Ã =

[
Ãoo Ãon

Ãno Ãnn

]

Without loss of generality Cη̃ηη assumes to be a diagonal matrix (by applying
the similarity transformation C

−1/2
η̃ηη ).

Now we describe the Kalman filtering algorithm for the state space rep-
resentation (5.57) and (5.58) using this partitioned matrix. The prediction
variance updating of Coo

t|t−1, C
no
t|t−1 can be written as:

Coo
t|t−1 = ÃooC

oo
t−1|t−1Ã

′
oo + ∆oo + Coo

η̃ηη (5.61)

Cno
t|t−1 = ÃnnC

no
t−1|t−1Ã

′
oo + ∆no (5.62)

where

∆oo = ÃonC
nn
t−1|t−1Ã

′
on + ÃooC

on
t−1|t−1Ã

′
on + ÃonC

no
t−1|t−1Ã

′
oo

∆no = ÃnoC
oo
t−1|t−1Ã

′
oo + ÃnoC

on
t−1|t−1Ã

′
on + ÃnnC

nn
t−1|t−1Ã

′
on.

The innovation covariance matrix Λt and the Kalman gain Kh
t can be simplified

as:

Λt =
[
US 000

]
Ct|t−1

[
US 000

]′
+ Cεεε

= USCoo
t−1|t−1S

′U ′ + Cεεε. (5.63)

Kh
t = Ct|t−1(USA)′Λ−1

t

=

[
Coo

t|t−1

Cno
t|t−1

]
S ′U ′(USCoo

t−1|t−1S
′U ′ + Cεεε)

−1. (5.64)

Finally the filtered variance updating can be calculated as follows,

Ct|t = (I −Kh
t (USA)′)Ct|t−1

= Ct|t−1 −
[
Coo

t|t−1

Cno
t|t−1

]
R
[
Coo

t|t−1 Cno
t|t−1

]
,
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where R = S ′U ′Λ−1
t SU . The corresponding portion of Coo

t|t and Cno
t|t are ob-

tained by

Coo
t|t = Coo

t|t−1 − Coo
t|t−1RCoo

t|t−1 (5.65)
Cno

t|t = Cno
t|t−1 − Cno

t|t−1RCoo
t|t−1 (5.66)

The equations necessary for the prediction and filtered variance updating
of hhht are described in (5.61) ∼ (5.66) using the partitioned matrices. It
should be noted that only the portions of the covariance matrix relating to
observable space, that is, Coo

t|t−1, C
no
t|t−1 are required for the derivation of the

Kalman gain (5.64). The variance updating of these parts are shown in
Eqs.(5.61),(5.62),(5.65) and (5.66).

From the discussion above, the following proposition are satisfied.

Proposition 1 If Ãon = 0 and Ãno = 0, under some conditions about the
initial state estimates hhh0|0 and covariance C0|0, Kalman filtering for the state
hhht (see Eq.(5.58)) is equivalent to that for the state hhht,o of small dimension Ne

of which state space representation is given by

vvvt = UShhht,o + εεεt (5.67)
hhht,o = Ãoohhht−1,o + η̃ηηt,o. (5.68)

Proof Since Ãon = 0, Ãno = 0 from the assumption, ∆oo = ∆no = 000. Thus
Eqs. (5.61),(5.62) become

Coo
t|t−1 = ÃooC

oo
t−1|t−1Ãoo + Coo

η̃ηη (5.69)

Cno
t|t−1 = ÃnnC

no
t−1|t−1Ã

′
oo. (5.70)

Eqs.(5.69),(5.70),(5.64),(5.65) and (5.66) constitute Kalman filtering to the full
state hhht (under the assumptions). If the initial state variance is specified so
that Cno

0|0 = 0, then Eqs.(5.70),(5.66) lead to Cno
t|t = 0 for any t. Hence the

exact Kalman filtering algorithms for hhht is consisting of Eqs.(5.69),(5.64) and
(5.65).

On the other hand, Kalman filtering to the state hhht,o is consisting of
Eqs.(5.69), (5.65) and

Kho
t = Coo

t|t−1S
′U ′(USCoo

t−1|t−1S
′U ′ + Cεεε)

−1. (5.71)

Since this Kalman gain is equivalent to the Kalman gain in Eq.(5.64) when
Cno

t|t−1 = 0, the updating of state covariance matrices are equivalent.
The original state jjjt is related to the state hhht and hhht,o by jjjt = WAhhht =

W1hhht,o + W2hhht,n, thus if hhh0|0,n = 000 then WAhhht|t = W1hhht|t,o.
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(Remark 1) The conditions against an initial state sound very strong. How-
ever in the absence of strong prior knowledge, the initial covariance matrix is
often assumed to be a diagonal matrix thereby the assumption for the covari-
ance matrix is satisfied. The assumption hhh0|0,n = 000 means the initial state is
estimated so that the estimate jjj0 is on the space spanned by the column vec-
tors of W1. Even if hhh0|0,n �= 000, this difference might make little effect because
hhh0|0,n does not depend on the observations. As will be shown later, observable
projection Kalman filtering is consisting of the variance updating of Coo

t|t−1 and
the mean updating of the full state hhht.
(Remark 2) The Kalman gain (5.64) only requires Coo

t|t−1, C
no
t−1|t−1 because the

last Ns − Ne columns of the observation matrix USA is consisting of zeros. It
is notable that huge matrices Cnn

t|t−1 need not be kept and computed.
(Remark 3) The assumption Ãno = 0 is also needed because if not, Eq.(5.70)
will become

Cno
t|t−1 = ÃnoC

oo
t−1|t−1Ã

′
oo + ÃnnC

no
t−1|t−1Ã

′
oo.

Thus Cno
t|t−1 �= 000 for some t even if Cno

0|0 = 0.
(Remark 4) This proposition indicates that under the assumptions Ãon = 0
and Ãno = 0, the dimension of the state can be reduced considerably. Though
the assumptions Ãon = 0 and Ãno = 0 seem to be strong, the most feasible
choice of the dynamics in many applications, that is, the random walk model
satisfies this assumption. It is easy to check that a transition matrix of the
form A = aINs , where a is a scalar constant, satisfies this condition, since

Ã = W ′
AAWA = aINs . (5.72)

Proposition 2 For the random walk model, it is sufficient to consider the
reduced state space representation (5.67),(5.68) under the mild condition of
the initial filtered variance.

Now we discuss observable projection Kalman filtering of the state space
representation (5.53),(5.54). Firstly the similarity transformation WA is ap-
plied to the original state jjjt so that the state space is represented by (5.57),(5.58).
In this representation, the state variance is updated as in (5.69) ∼ (5.66)
whereas the state estimates (mean) is updated as follows

hhht|t = hhht|t−1 + Kh
t (vvvt − USAhhht|t−1). (5.73)

The equation (5.73) can be represented by the original state jjjt and WA:

jjjt|t = jjjt|t−1 + W ′
AKh

t (vvvt − Kjjjt|t−1) (5.74)

Thus it is possible to update the state variance of hhht while updating the state
estimates of jjjt. Note that the state variance updating (5.69) ∼ (5.66) still
demands huge memory consumption (Ã is a Ns × Ns matrix), which makes
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impracticable to employ Kalman filtering directly. Furthermore the similarity
transformation WA can not be determined uniquely.

Observable projection Kalman filtering can be obtained by projecting all
the matrix relating to the variance updating on the space spanned by W1 which
is uniquely determined from the lead field matrix. In other words, instead of
using (5.69) ∼ (5.66), Eqs.(5.69),(5.65) and (5.64) with Cno

t|s = 0 are employed
for updating the filtered and the predicted variance. In summary observable
projection Kalman filtering updates the state estimation for the full state jjjt

while the state variance is approximately updated in the observable space. It
should be noted the filtering of hhht,o in (5.67),(5.68) corresponds to updating
both the state estimates and variance in the observable space. If the dynam-
ics A such that the assumptions in Prop.1 are satisfied is used, observable
projection Kalman filtering is completely consistent with ordinal Kalman fil-
tering. Therefore the computation and memory cost can be drastically reduced
without loss of any information due to the approximation.

Proposition 3 For the random walk model, observable projection Kalman fil-
tering can works without any approximation under the mild condition against
the initial filtered variance.

(Remark) From Eq.(5.64), the bias of the filtered state estimate due to the
approximation can be evaluated as

−
[

∆oo

Cno
t|t−1

]
S ′U ′Λ−1

t rrrt

where ∆oo = ÃonC
nn
t−1|t−1Ã

′
on + ÃooC

on
t−1|t−1Ã

′
on + ÃonC

no
t−1|t−1Ã

′
oo and rrrt is the

innovation.

It is obvious that projection Kalman filtering approaches to ordinary Kalman
filtering when W1 is augmented to WA. However in order to appropriately
choose new basis which is incorporated into W1, additional knowledge about
the electrical sources is needed. The use of the transition matrix through
the observation matrix is possible. For example, the SVD of the truncated
observable matrix (see Kailath 1980 or Aoki 1987 for the observable matrix)

Oi = (K′, (KA)′, · · · , (KAi)′)′ (5.75)

could be used as an immediate extension of observable projection Kalman
filtering (corresponding to the case i = 0).
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5.4 Partitioned Kalman filtering

5.4.1 Algorithm

This approximate filtering method has been first applied for the EEG dynam-
ical inverse problem by Galka et al. 2002. In the literature the authors refer
to "spatio-temporal Kalman filtering". However, I would like to call it "par-
titioned Kalman filtering" because it is a key idea to partition the state jjjt of
large dimension into sets of the state of small dimension.

Let jv
t and aij denote the vth element of jjjt and the ijth element of a

transition matrix A, respectively. We further define the current source vector,
the lead field matrix and the transition matrix removed the vth corresponding
element as follows,

jjj−v
t = (j1

t , · · · , jv−1
t , jv+1

t , · · · , jNs
t )′

K−v = [kkk·1, · · · ,kkk·v−1,kkk·v+1, · · · ,kkk·Ns]

aaa−v = (av1, · · · , av,v−1, av,v+1, · · · , av,Ns)

Here the vector kkk·v denotes the vth column vector of the lead field matrix K.
Then the model (5.3) for the state of one voxel jv

t can be written as

vvvt = kkk·vjv
t + K−vjjj−v

t + εεεt εεεt ∼ N(0, σ2Cεεε)

jv
t = avvj

v
t−1 + aaa−vjjj−v

t−1 + ηv
t ηv

t ∼ (0, τ 2).

This is the state space representation for the partitioned state jv
t . By re-

garding the variable jjj−v
t as the exogenous variable (i.e. a constant with respect

to jv
t ), the following algorithm can be obtained.

[ Prediction]
for each voxel v, (v = 1, · · · , Ns)

jv
t|t−1 = avvj

v
t−1|t−1 + aaa−vjjj−v

t−1|t−1 (5.76)

νv
t|t−1 = a2

vvν
v
t−1|t−1 +

∑
i�=v

a2
viν

i
t−1|t−1 + τ 2 (5.77)

[ Filter]

rrrt = vvvt − Kjjjt|t−1 (5.78)

Λt =

Ns∑
i=1

kkk·iνi
t|t−1kkk

′
·i + σ2Cεεε (5.79)

for each voxel v, (v = 1, · · · , Ns)

Kv
t = νv

t|t−1kkk
′
·vΛ

−1
t (5.80)

jv
t|t = jv

t|t−1 + Kv
trrrt (5.81)

νv
t|t = νv

t|t−1 −Kv
tkkk·vνv

t|t−1 (5.82)
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[ Fixed interval smoothing ]
for each voxel v, (v = 1, · · · , Ns)

bt,vi =
νv

t|taiv

νi
t+1|t

(5.83)

jv
t|T = jv

t|t + bt,vv(j
v
t+1|T − jv

t+1|t) +
∑
i�=v

bt,vi(j
i
t+1|T − ji

t+1|t) (5.84)

νv
t|T = νv

t|t + b2
t,vv(ν

v
t+1|T − νv

t+1|t) +
∑
i�=v

b2
t,vi(ν

i
t+1|T − νi

t+1|t) (5.85)

where jv
t|s, ν

v
t|s is the conditional expectation and variance of jv

t , which are scaler
values. The value bt,vi is the vith element of Bt in Eq.(5.11).

It is important to see that to regard the variable jjj−v
t as the exogenous

variable against jv
t corresponds to ignore the correlation between the elements

in the vector jjj−v
t and the variable jv

t . Since this technique mainly makes use
of the information from the diagonal components of the original filtered and
prediction covariance matrices and only the computation for small matrices is
needed, the computation and memory consumption can crucially be reduced,
compared with the original Kalman filter algorithm. It should be noted that
it is possible to take the correlation within the partitioned state into con-
sideration by a larger partition of the original state jjjt (the above-mentioned
algorithm is in the case of the smallest partition i.e. the partitioned state
corresponds to each element of the state jjjt).

5.4.2 Derivation

In order to make clear what kind of approximations are employed, the deriva-
tion of the above-mentioned algorithm will be shown.

Let VVV t = (vvv1, vvv2, · · · , vvvt) denote the space spanned by the observations up
to t. Given jv

t−1|t−1 and νt−1|t−1 for all voxels v, the predicted state expectation
and variance can be calculated,

jv
t|t−1 = E[jv

t |VVV t−1]

= E[jv
t |j1

t−1|t−1, · · · , jNs

t−1|t−1]

= avvj
v
t−1|t−1 + aaa−vjjj−v

t−1|t−1, (5.86)

and

νv
t|t−1 = E[(jv

t − jv
t|t−1)

2|VVV t−1]

= E[{avv(j
v
t−1 − jv

t−1|t−1) + aaa−v(jjj−v
t−1 − jjj−v

t−1|t−1) + ηv
t }2|VVV t−1]

= a2
vvVar(jv

t−1|VVV t−1) + Var(aaa−vjjj−v
t−1|VVV t−1)

+ Cov(avvj
v
t−1, aaa

−vjjj−v
t−1|VVV t−1) + τ 2

≈ a2
vvν

v
t−1|t−1 +

∑
i�=v

a2
viν

i
t−1|t−1 + τ 2. (5.87)
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From the third equation to the last equation (5.87), the approximation

Cov(ji
t−1, j

k
t−1|VVV t−1) ≈ 0 i �= k (5.88)

has been employed. It is obvious that the third term of the third line is
vanished from this assumption and the second term can be simplified as

Var(aaa−vjjj−v
t−1|VVV t−1) =

∑
i�=v

a2
viVar(ji

t−1|VVV t−1) +
∑
i,k �=v

aviavjCov(ji
t−1, j

k
t−1|VVV t−1),

and the terms of the covariance are vanished again.

The innovation rrrt and innovation variance Λt can be calculated:

rrrt = vvvt − kkk·vjv
t|t−1 − K−vjjj−v

t|t−1, (5.89)

and

Λt = E[{kkk·v(jv
t − jv

t|t−1) + K−v(jjj−v
t − jjj−v

t|t−1) + εεε}2]

= kkk·vVar(jv
t |VVV t−1)kkk′

·v + Var(K−vjjj−v
t−1|VVV t−1)

+ Cov(kkk·vjv
t , K

−vjjj−v
t |VVV t−1) + σ2Cεεε

≈ kkk·vνv
t|t−1kkk

′
·v +
∑
i�=v

kkk·iνi
t|t−1kkk

′
·i + σ2Cεεε. (5.90)

Again the similar arrangement as in the Eq.(5.87) has been employed from the
third equation to the last equation (5.90).

Then the filtered state expectation can be calculated:

jv
t|t = E[jv

t |VVV t−1, rrrt]

= E[jv
t |VVV t−1] + E[jv

t |rrrt]

= jv
t|t−1 + Cov(rrrt, j

v
t )Var(rrrt)

−1rrrt

= jv
t|t−1 + Kv

trrrt (5.91)

where the Kalman gain Kv
t is defined and simplified as

Kv
t = Cov(rrrt, j

v
t )Var(rrrt)

−1

= E
[
E[(kkk·v(jv

t − jv
t|t−1) + K−v(jjj−v

t − jjj−v
t|t−1) + εεε)(jv

t − jv
t|t−1)|VVV t−1]

]
Λ−1

t

≈ νv
t|t−1kkk·vΛ−1

t . (5.92)

Finally the filtered state variance can be calculated as

νv
t|t = Var(jv

t |VVV t−1, rrrt)

= Var(jv
t |VVV t−1) − Cov(jv

t , rrrt)Var(rrrt)
−1Cov(jv

t , rrrt)
′

= νv
t|t−1 −Kv

t ΛtKv′
t

= νv
t|t−1 −Kv

tkkk·vνv
t|t−1 (5.93)

In the derivation of the filtered state expectation and variance (5.91),(5.93),
Lemma 2 in appendix B are employed. The derivation of fixed interval smooth-
ing is direct from the standard Kalman smoothing algorithm in Sec.5.1.
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5.4.3 Remarks

As shown in the previous subsection, the main assumption of this filtering
technique is

Cov(ji
t−1, j

k
t−1|VVV t−1) ≈ 0 i �= k.

The assumption that there is no correlation between the different voxels, seems
to be unrealistic for this application. However if we combine the state of nearby
voxels into one partitioned state, for example, in guise of knowledge of brain
anatomy, this technique can exploit the information of the covariance within
each partitioned state and will be more applicable. In my opinion, whether this
method is appropriately employed or not depends on how to partition the state,
therefore the knowledge of the specific application should be carefully taken
into consideration for the partition. I would like to mention some additional
remarks:

• For the case of the transition matrix A being sparse, this technique could
be more suitable in point of computation cost because the summations
in the prediction, filtering and smoothing steps are necessary only for a
few terms.

• Positive definiteness of the predicted, filtered and smoothed covariance
matrices is not guaranteed even in theory, while it is guaranteed in the
Standard Kalman filter. This point will be a challenging future work.

• The system noise should be uncorrelated (i.e. Cηηη can be expressed by a
diagonal (or near diagonal) matrix), because this technique mainly ex-
ploits the information of the covariance structure on the diagonal com-
ponents. Hence the prewhitening (see Sec.5.5) is preferable before the
filtering algorithm.

• The similar algorithm has already been employed in the field of data
assimilation in geophysics (Fukumori 2001; Fukumori 2002).

5.5 Model

In the EEG source localization problem, no equation describing the dynamics
of the dipoles on the cortex has been proposed so far. Hence our strategy in
this thesis is an traditional approach in time series analysis, that is, we explore
most appropriate dynamics in a class of the parametric model and evaluate
the goodness of the model using the likelihood.

In the state space representation, the dynamics, the system and observation
(instrumental) noise must be specified before the filtering algorithm.



50 Dynamical Inverse Solution

5.5.1 Dynamics

In this thesis, only a class of the linear dynamics is explored so that the dy-
namics can be represented by a (transition) matrix of size Ns ×Ns. Since the
dynamics represented by a dense matrix requires huge memory for keeping as
well as parameter estimation of huge dimension, the dynamics being param-
eterized by rather small number of parameters and represented by a sparse
matrix of size Ns × Ns is used.

• Random walk model:

jjjt = jjjt−1 + ηηηt, (5.94)

This model corresponds to the case At = INs and is interpreted as impos-
ing the temporal smoothness constraint on jjjt. The random walk model
is one of the most feasible choice of the dynamics when no apriori knowl-
edge is available. Because there is no parameter to be estimated, this
model can be seen in many literatures of the dynamical inverse problem.

• Neighbor interaction AR model:

jjjt = A(θθθ)jjjt−1 + ηηηt,

A(θθθ) = a0I + a1L (5.95)

where θθθ = (a0, a1). Since the Laplacian matrix L has entries only in the
diagonal and their neighbor parts, this parameterization models the AR
process with neighbor interactions. We can extend the nearest neighbor
interactions to the second neighbor interactions by a parameterization,

A(θθθ) = a0I + a1L + a2L
2.

Note that these dynamics are spatially homogeneous with isotropic in-
teractions.

• Regional AR model:

jjjt = A(θθθ)jjjt−1 + ηηηt,

A(θθθ) = diag(a1, · · · , a1, a2, · · · , a2, · · · , · · · , aR) (5.96)

where θθθ = (a1, a2, · · · , aR). In Eq.(5.96), the same value of a parameter
is taken in a certain region partitioned, for example, based on anatomical
knowledge. This models the AR process with regional heteroscedasticity.

The random walk model is contained in the neighbor interaction AR model or
the regional AR model as a special case. If more parameters are allowed, more
complex models, for example, regional AR model with neighbor interactions
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can be considered. It should be noted that so far the number of parameters
more than 10 is impracticable from the author’s experience,

Note that if the past states up to p are incorporated into the dynamics,
the dynamics is modeled by a matrix of size (Ns · p) × (Ns · p), which may
cause computational difficulty even in these realistic parameterization of the
dynamics.

5.5.2 Observation noise

The observation noise may reflect the property of electrolodes and the envi-
ronment in measuring. These information, however, is generally difficult to be
involved in the model. In this thesis, the simplest form, Cηηη ∝ I, is assumed.

5.5.3 System noise

The LORETA solution with the spatial smoothness has been reported to attain
the best localization between several instantaneous inverse solutions (Pascual-
Marqui 1999). Motivated by this fact, we would like to impose the spatial
smoothness on the source jjjt. However it is difficult to exactly impose the
spatial smoothness constraint on the sources because in the state space repre-
sentation employed through this thesis, the dynamics and the structure of the
system noise are combined to constitute a spatio-temporal constraint onto the
sources.

Our compromise for the system noise is ηηηt = L−1ξξξt where ξξξt ∼ N(0, τ 2I).
By this, we assume the system noise ηηηt with spatial smoothness. How this sys-
tem noise works as a constraint on the source jjjt can be seen from an example,

jjjt = jjjt−1 + ηηηt, ηηηt ∼ N
(
0, τ 2(LL′)−1

)
. (5.97)

If the previous source jjjt−1 has the spatial smoothness, then jjjt also has the
spatial smoothness because ηηηt is a random noise with spatial smoothness. Thus
the model (5.97) imposes both the temporal and spatial smoothness on the
sources jjjt, if the initial source vector jjj0 has the spatial smoothness. Unless the
dynamics changes neighborhoods of the next future source rapidly, this system
noise indirectly works as a spatial smoothness constraint on the source.

5.5.4 Prewhitening

Because (LL′)−1 is a dense matrix of size Ns×Ns, the computational difficulty
also arises. In practical, the prewhitening of the system noise covariance is
employed before the filtering algorithm. By multiplying L on both hand-sides
of the system equation, we obtain

Ljjjt = LAtL
−1Ljjjt−1 + ξξξt (5.98)
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where At is any transition matrix and ξξξt ∼ N(0, τ 2I). Then the state space
representation for the new state j̃jjt = Ljjjt can be considered:

vvvt = K̃j̃jjt + εεεt (5.99)
j̃jjt = Ãtj̃jjt−1 + ξξξt (5.100)

where K̃ = KL−1 and Ãt = LAtL
−1. Note that in the new representation,

the system noise covariance matrix is diagonal. This approach can be also em-
ployed in the observation equation if the observation noise covariance structure
is known.

5.5.5 Parameter estimation

The parameters ΘΘΘ (including the dynamical parameters and the amplitude
of noise variance) is estimated by the maximum likelihood estimate (MLE)
method. As a virtue of Kalman filtering, the likelihood can easily obtained
during the filtering process using the innovations (Schweppe 1965):

−2 log p(vvv1, · · · , vvvT ;ΘΘΘ) =
T∑

t=1

log |Λt(ΘΘΘ)| +
T∑

t=1

rrr′t(ΘΘΘ)Λt(ΘΘΘ)−1rrrt(ΘΘΘ). (5.101)

where the innovation rrrt and the innovation variance Λt can be calculated as
in Eqs.(5.6),(5.7) in Kalman filtering, as in Eqs.(5.39),(5.40) in observable
projection Kalman filtering, and as in Eqs.(5.78),(5.79) in partitioned Kalman
filtering. A constant term is ignored in Eq.(5.101). The MLE can be obtained
by minimizing the -2 times log-likelihood (5.101).

In the RPLS method, the parameters are estimated from the type II log-
likelihood, which is equivalent to the above-mentioned log-likelihood:

−2 log p(vvv1, · · · , vvvT ;ΘΘΘ)

= TNe log σ2 + T
Ne∑
i=1

log
s2

i + λ2

λ2
+

1

σ2

T∑
t=1

Ne∑
i=1

r̃2
i,t(ΘΘΘ)

λ2

s2
i + λ2

.(5.102)

Here due to the approximation using in the RPLS method, the form (5.102)
is simpler than Eq.(5.101). (see Sec.5.2 for detail).

5.5.6 Model Comparison

If there are many candidates of the model, the best candidate should be chosen
using some objective criteria. In statistics, the goodness of solutions resulting
from corresponding models is evaluated by likelihood so that a model with the
highest likelihood is chosen as the best.

Unfortunately in the parametric approach the log-likelihood at the MLE
Θ̂̂Θ̂Θ has bias depending on the number of parameters in a model, therefore the
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quantity to correct (or reduce) this bias has been introduced in various liter-
atures; as examples, AIC (Akaike 1973), SIC (Schwarz 1978), AICc (Hurvich
and Tsai 1989; Bengtsson and Cavanaugh ).

In this study we choose to employ AIC because of its simple form and wide
use of this criterion in various applications. AIC is defined as follows:

AIC = −2L(Θ̂̂Θ̂Θ) + 2Np (5.103)

where Np is the number of parameters in the model for fitting and L(·) is the
log-likelihood function.





Chapter 6

Results

In this chapter the results for the simulation studies and for the analysis of
real EEG data will be presented. Firstly, for comparison of three approximate
filtering algorithms and Kalman filtering algorithm, the small number of voxels
(282 voxels) is used. After that, two simulation studies and the real data
analysis will be demonstrated using the following practical settings in common:

• The lead field matrix K was calculated by using the boundary element
method for a three-shell head model (Riera and Fuentes 1998).

• A brain model, derived from the Average Probabilistic MRI Atlas pro-
duced by the Montreal Neurological Institute (Mazziotta, Toga, Evans,
Fox, and Lancaster 1995), was employed.

• The resolution of the voxel discretization was 7 mm, resulting in a total
number of 8723 voxels. Generators are assumed to be located only within
gray matter, therefore the number of voxels which have to be considered,
reduces to 3433 (see Fig.6.2).

• The number and locations of EEG electrodes follows the standard 10-20
system.

6.1 Comparison of Filtering Algorithms

In order to compare the solutions obtained by three proposed filtering algo-
rithms and Kalman filtering, the small number of voxels is used in this section.
In this voxel set, the number of voxels is 282, therefore the dimension of the
current vector to be estimated becomes 846. EEG measurements are observed
at 12 electrodes on the scalp.
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A time series of T = 256 observations is generated from the model,

vvvt = Kjjjt + εεεt

jjjt = (a1INs + b1L)jjjt−1 + (a2INs + b2L)jjjt−2 + ηηηt (6.1)
Var(εεεt) = σ2INe Var(ηηηt) = τ 2(LL′)−1.

where (a1, a2, b1, b2, σ, τ)=(1.65, -1.00, 0.05, 0.00, 0.02, 0.01). Small amplitude
of the system noise is chosen compared with the amplitude of the current
source, whereas rather high amplitude of the observation noise is chosen so
that the standard deviation of the noise corresponds to 30% as much as that
of the noise-free observations.

Using the true initial states, the states jjj1, · · · , jjjT is estimated by the RPLS
method (denoted by RPLS), observable projection Kalman filtering (denoted
by O-Kalman), partitioned Kalman filtering (denoted by P-Kalman) and ordi-
nary Kalman filtering. In applying RPLS, O-Kalman, and P-Kalman, all the
parameters are estimated. In applying ordinary Kalman filtering, the param-
eters estimated by O-Kalman is used because as shown in table 6.1, Kalman
filtering takes too much time to optimize the parameters. In table 6.1, for each
four algorithms, computational time for running the filtering algorithm for 256
observations and the values of root mean square error (RMSE) are listed. All
the computation was done on a PC with a clock rate of 2GHz and with ROM
of 2GB.

It can be seen that Kalman filtering attains the least RMSE in sacrifice
of computational time. On the other hand, RPLS and O-Kalman attains
reasonable accuracy with reasonable computational time. The performance of
P-Kalman is a little worse both in accuracy and in computational efficiency in
this case.

In Fig.6.1, for four specific voxels, the time series estimated by four algo-
rithms and the true time series are presented. It can be observed that the
estimated time series obtained by RPLS and O-Kalman are very similar. We
can also see that the estimated time series of P-Kalman and Kalman are noisy
especially on the voxels [B] and [C]. This is probably due to the inaccurate
estimates of the observation and system noise variance. Since the ratio of
these variance determines reliability for observations, the misspecification of
this ratio tends to cause too noisy estimates. In addition again due to the
inaccurate estimates of the dynamical parameters, on the voxel [D] the esti-
mated time series by P-Kalman fails to chase the true time series. It should
be noted that on the voxels with high amplitude such as [A] and [D], the time
series estimated by four algorithms are not so different, whereas on the voxels
with rather small amplitude such as [B] and [C], the difference can be observed
as have discussed above. Therefore in total the difference of the solutions ob-
tained by four algorithms is not so large. Actually when we see the results as
movies, the difference is too small to distinguish.
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Computational Time (sec.) RMSE
RPLS 1.24 0.74

O-Kalman 2.28 0.88
P-Kalman 27.1 4.49
Kalman 2580 0.45

Table 6.1: Comparison of the filtering algorithms

6.2 Simulation Study I
In this simulation study, the dynamical inverse solution will be compared with
the instantaneous solution. As the simulated sources, two extended current
sources are set; one in the occipital area, the other in the frontal area (see
the left panel of Fig.6.3). These two sources are designed to evolve in a de-
terministic and periodic way using trigonometric functions. In Fig.6.4, the
time series of these two sources are plotted by the succession of circles. By
multiplying the lead field matrix to the current source vectors, a time series of
the EEG measurement without any noise was generated. Then, four different
EEG observations were generated by adding Gaussian white noise of four level
(5%, 10%, 20%, 33%).

For each four sets of the observation,

• the instantaneous inverse solution is obtained via LORETA.

• the dynamical inverse solution is obtained via DynLORETA.

Here DynLORETA consists of a dynamical model with a maximum spatial
smoothness constraint and the RPLS method as a state estimation algorithm
(Yamashita et al. 2004). As the dynamical model, the regional AR(2) model,
where a whole brain is separated into three regions (occipital region, frontal
region, the remaining region) is employed.

The goodness of the solutions is evaluated using the following four criterion;

• Root Mean Square Error (RMSE):

RMSE =

√√√√ 1

Ne · T
T∑

t=1

||jjj(t) − ĵ̂ĵj(t)||2

where jjj(t) and ĵ̂ĵj(t) are the true and the estimated current vector at time
point t, respectively.

• Akaike Bayes Information Criteria (ABIC):

ABIC = −2L(II)(λ̂, θ̂θθ) + 2 × Np
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Figure 6.1: Time series of the local current vector on four specific voxels. In four figures
of the left-top panel [A], from the top to the bottom. the time series of one of four voxels
estimated by RPLS, O-Kalman, P-Kalman and Kalman are plotted by ’+’, respectively. In
each four figures, the true time series is also plotted by real line. In another three panels
[B],[C] and [D], the estimated time series and the true time series of another three voxels
are shown in the same way. Note that the scale of time series is different voxel by voxel.
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Figure 6.2: Location of voxels employed in the simulation studies and the real data analysis.
The position of each voxel is denoted by a dot. The number of voxels is 3433.

where Np is the number of the parameters. A solution with a smaller
value is better.

• Localization Error (LE) (Pascual-Marqui 1999) (the distance between
the location of the true source and an estimated source) :

LE = ||�r(v) − �r(v̂)||
where �r(u) is the coordinate of a voxel u. Voxels on which the amplitude
of the true and estimated current source vector attains (local) maximum
is denoted by v and v̂, respectively.

• Visibility (VI) (Pascual-Marqui 1999) (the ratio of the amplitude of an
estimated source to the amplitude of the true source :

VI =
ĵv̂

jv

where jv is the vth component of the true current vector jjj. A solution
with VI close to 1 is preferable.
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The results of comparison are summarized in table 6.2, . From this table,
the following observations can be pointed out:

• The values of RMSE for the DynLORETA solution are a half of those
for LORETA solution.

• The values of RMSE for the DynLORETA solution do not change irre-
spective of the observation noise level, whereas those for the LORETA
solution increase as the observation noise level increases. This weakness
of instantaneous inverse solutions has already been noticed by Schmidt
et al. 2001.

• As to LE for the occipital source, the DynLORETA solutions sometimes
get worse than the LORETA solutions.

• As to LE for the frontal source, the DynLORETA solutions always attain
smaller (better) values than the LORETA solutions.

• As to Vi, for both the occipital and frontal sources, the DynLORETA
solutions are better than the LORETA solutions. This fact can be ob-
served in Fig.6.3 as the spatial distribution of the current vectors and in
Fig.6.4 as the time series of the sources on two voxels.

• In each case, the ABIC value of the DynLORETA solution is smaller
than that of ABIC. This indicates the DynLORETA solution is better
than the LORETA solution. This result is consistent with the results of
another criterion. It should be noted that ABIC is available even without
knowing the TRUE current vector.

As the advantage of DynLORETA over LORETA, we mention higher visi-
bility, less ghost, the temporal smoothness and robustness for the observation
noise. However DynLORETA sometimes results in worse localization if the
localization of the initial state estimate is not good.

6.3 Simulation Study II

In order to confirm whether observable projection Kalman filtering works well
in large number of voxels, a simulation experiment will be performed. For this
purpose a time series of T = 500 observations from a AR(2) model of voxel
dynamics, with nearest-neighbor interactions, as described by

vvvt = Kjjjt + εεεt

jjjt = (a1INs + b1L)jjjt−1 + (a2INs + b2L)jjjt−2 + ηηηt (6.2)
Var(εεεt) = σ2INe Var(ηηηt) = τ 2INs
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Figure 6.3: Spatial distributions of the current vectors for the simulation (left panel) and
for the inverse solutions obtained by DynLORETA (middle panel), and by LORETA (right
panel). The solutions were obtained from the EEG observation at time about 0.08 second
with 10% observation noise.
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Figure 6.4: Time series of two sources. In the top panel, for the frontal source, the time
series of true, estimated by DynLORETA and estimated by LORETA are plotted by circles
’o’, thin line and thick line, respectively. In the bottom panel, for the occipital source, the
time series of true, estimated by DynLORETA and estimated by LORETA are plotted by
circles ’o’, thin line and thick line, respectively.
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5% 10% 20% 33%

RMSE LOR 14.2 14.3 14.6 14.9
DLOR 7.2 7.5 7.3 7.3

ABIC LOR -44604 -43817 -42049 -40164
DLOR -59595 -54345 -48770 -44915

LE-O LOR 6.0 7.6 8.2 9.4
(mm) DLOR 5.5 9 10.8 8.8
LE-FR LOR 15.8 15.5 15.2 15.6
(mm) DLOR 11.3 11.0 11.8 11.9
VI-O LOR 0.32 0.32 0.3 0.29

DLOR 1 1.02 1.03 0.99
VI-FR LOR 0.10 0.10 0.09 0.08

DLOR 0.51 0.49 0.47 0.50

Table 6.2: Comparison of DynLORETA and LORETA solutions. For each level of the
observation noise, the goodness of the LORETA solution and the DynLORETA solution are
compared using four criterion - RMSE (Root Mean Square Error), ABIC (Akaike’s Bayes
Information Criteria), LE (Localization Error) and VI (Visibility). ’O’ and ’Fr’ denote
’Occipital’ and ’Frontal’, respectively (’LE-O’ denotes localization error of the occipital
source).

where the parameters are chosen as (a1, a2, b1, b2, σ, τ)=(1.82, -1.00, 0.07, 0.00,
20, 10). The initial distribution of the current source is chosen from a LORETA
solution of the real data of alpha wave at single time point so as to let this
simulation approach a realistic situation (Fig.6.6). The EEG observations
vvv1, . . .vvvT are shown in Fig.6.5. In the figure a stationary oscillation can be
seen around the channel O2 like alpha activity.

Then the following AR(2) model is fitted to the generated observations,

vvvt = Kjjjt + εεεt

jjjt = (a1INs + b1L)jjjt−1 + (a2INs + b2L)jjjt−2 + ηηηt (6.3)
Var(εεεt) = σ2INe Var(ηηηt) = τ 2(LL′)−1.

using observable projection Kalman filtering. For starting the filtering algo-
rithm, LORETA solutions from the first two observations vvv1, vvv2 are employed.
The parameters are estimated as (â1, â2, b̂1, b̂2, σ̂, τ̂)=(1.82, -1.00, 0.04, 0.05,
19, 104) by maximizing the likelihood function Eq.(5.101). Except τ , the es-
timated parameters are close to the true ones. It should be noted that the
system noise covariance matrix of the fitted model and that of the true model
is different. Due to misspecification of the system noise covariance structure,
the estimate of τ is considered to be far from the true value.
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In Fig.6.7 for four specific voxels, chosen from the frontal, the right tempo-
ral, the left temporal and the occipital regions, the corresponding time series
of the length of current vectors (i.e. |j| =

√
j2
x + j2

y + j2
z ) for the simulation

("truth") and for the obtained inverse solutions are plotted. In each figure we
can see that the inverse solutions via observable projection Kalman filtering
reproduce the true time series very well though in the beginning of time se-
ries, the deviation of the estimated series from the true series is large due to
inaccuracy of the initial state estimates. In this simulation study, this good
reconstruction can be seen in all voxels.
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Figure 6.5: Simulated EEG observations at 19 standard electrode positions of the 10/20-
system, according to the model given by Eq.(6.2).
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Figure 6.6: Maximum-intensity projections of the distribution of current sources, used as
initial value for the simulation: front view (left panel), top view (middle panel) and side
view (right panel). Grayscales correspond to the length of the local current vectors. This
distribution was obtained from a LORETA solution of the real alpha wave at single time
point.
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Figure 6.7: Time series of the length of the estimated local current vector at four specific
voxels. In each panel, the estimated time series and the true time series are plotted by thick
line and thin line, respectively.
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6.4 Real Data Analysis
In Fig.6.8 a clinical EEG recording is shown, recorded from a healthy child
in awake state with closed eyes. At the occipital electrodes O1 and O2 an
oscillation is visible which represents the characteristic alpha rhythm. For the
analysis of this data set a regional homogeneous AR(2) model is employed,
given by

YYY t = KJJJ t + εεεt

JJJv
t =

{
a1JJJ

v
t−1 + a2JJJ

v
t−2 + ηηηv

t v ∈ G

b1JJJ
v
t−1 + b2JJJ

v
t−2 + ηηηv

t v /∈ G

Var(εεεt) = σ2INe, Var(ηηηt) = τ 2(L′L)−1.

Here the dynamics within a certain region G is assumed to differ from the
dynamics within the remaining part of brain. We have chosen the region G
as a sphere of radius 30mm centered within the occipital lobes; the center was
chosen according to the result of a LORETA solution of the same data.

Estimation of the dynamical parameters (a1, a2, b1, b2) by numerical opti-
mization provides the estimates (1.95,−0.99, 1.83,−0.83). From these esti-
mated parameter, the parametric spectrum of the AR model can be calculated
(Shumway 2000). In Fig.6.9 the parametric spectra both inside G and out
side G are shown. As can be seen, the parametric spectrum inside G displays
a clear peak around 8.4Hz, whereas the power spectrum outside G does not
display a clear peak, but just a drop of power towards higher frequencies. The
peak at 8.3 Hz falls well within the known range for alpha activity. These
results illustrate that by assuming a parametric model it is possible to make
detailed inference about the dynamics of the sources.

In Fig.6.10, we illustrate for 12 consecutive points of time (with a time shift
of 0.012 seconds = every 3 time point) the evolution of the spatial distribution
of a component of the estimated current vectors. We choose to display the
component of the current vectors which corresponds to the radial direction of
spherical coordinates, with the origin being located at the center of the head.
The solution provides two main sources oscillating in opposite phase in the
left and right occipital region. These two sources can be considered to be
generators of alpha rhythm (Valdés-Sosa, Bosch, Grave de Peralta-Menendez,
Hernández, Pascual, and Biscay 1992; Rodin and Rodin 1995).

In Fig.6.11, the time series of the estimated local current vector in the
radial direction of spherical coordinates at four voxels are shown. In the top
figure, two time series chosen from the voxels locating on the center of two
sources as shown in Fig.6.10 are plotted. We can see clear oscillation of alpha
activity for both two sources. Furthermore, we can see the change of the phase
of two sources during this two seconds. In the bottom figure, two time series
chosen from (arbitrary) voxels outside G are plotted. These two time series do
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not reveal any clear oscillation reflecting the feature of the estimated dynamics
outside G.

In Tab.6.3, the goodness of fitting using another models are demonstrated.
’LORETA’ is the instantaneous inverse solution with spatial smoothness, ’Ran-
dom walk(2)’ is the dynamical inverse solution with jjjt = 2jjjt−1 −jjjt−2 +ηηηt ,and
’Regional AR(2)’ is the dynamical inverse solution using the model mentioned
above in this section. The result indicates that the dynamical inverse solutions
are much better than the instantaneous inverse solution and also indicates
that the log-likelihood can be improved significantly with the introduction of
a few parameters in the ’Regional AR(2)’ model compared with the ’Random
walk(2)’ model.

Table 6.3: Model comparison for the real alpha data

-2 log-likelihood Number of parameters
LORETA 117995 2

Random walk(2) 107880 2
Regional AR(2) 100943 6
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Figure 6.8: Clinical EEG recording at 19 standard positions of the 10/20-system versus
time, obtained from a healthy 8-years old male child, awake with closed eyes. The vertical
axis represents observed voltages relative to the average reference. In the right panel, the
EEG recordings amplified around 3 sec. (marked by a diamond) are demonstrated.
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Figure 6.9: Logarithm of the parametric spectrum obtained from the estimated AR(2)
dynamics, versus frequency. Top panel shows the parametric spectrum inside region G and
bottom panel shows that outside region G. The region G is defined in the text of section
6.3.
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Figure 6.10: Spatial distributions of the component of the estimated current vectors in the
radial direction of spherical coordinates. These 12 figures correspond to the inverse solutions
of the EEG time series in the right panel of Fig.6.8.
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Figure 6.11: Time series of the estimated local current vector in the radial direction of
spherical coordinates at four voxels. In the top panel, two time series chosen from the voxels
locating on the center of two sources as shown in Fig.6.10 are plotted. The time series of the
right source and of the left source are plotted with thick line and with thin line, respectively.
In the bottom panel, two time series chosen from arbitrary voxels outside G are plotted.



Chapter 7

Discussion

In the part I, the inverse problem of estimating generators of EEG record-
ings have been addressed with particular emphasis on the use of dynamical
constraints. The following issues were discussed:

• The "dynamical inverse problem" of the EEG have been discussed. By
formulating the dynamical inverse problem as the state space represen-
tation, we can consider a general dynamical constraint in the system
equation. In particular, we consider a class of parametric models for the
dynamics and choose the best candidate by optimizing the parameters.

• As a parametric model for the spatio-temporal brain dynamics to be
used in the simulation study, we have employed a AR(2) model including
nearest-neighbor interaction. This particular class of parametric mod-
els is expected to be useful for two reasons; firstly, these models can be
interpreted as discretizations of partial differential equations describing
spatio-temporal dynamical phenomena; secondly, they can be formulated
by using highly sparse matrices which renders them appropriate for ap-
plication to high-dimensional problems.

• In principle, the optimum solution of this state estimation problem is
given by Kalman filtering and Kalman smoothing; however, due to the
high dimensionality of the state in the EEG inverse problem, the direct
application of Kalman filtering is very demanding (or even impossible)
in terms of computational time and memory consumption. As alterna-
tives, three approximate algorithms of Kalman filtering were proposed;
the recursive penalized least squares (RPLS) method, observable projec-
tion Kalman filtering and partitioned (spatio-temporal) Kalman filtering.
From their assumptions and properties, the RPLS method is appropri-
ate for a preliminary analysis in virtue of its modest computational time
and its easiness of the implementation. Observable projection Kalman
filtering is appropriate when the dynamics is specified as a simple model
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such as the random walk model. Partition Kalman filtering could be
employed when correlation among partitioned states can be ignored.

• In the simulation study of the small number of voxels, the solutions ob-
tained by these three algorithms and Kalman filtering are compared. As
a result, the RPLS method and observable projection Kalman filtering
provide the considerably accurate solutions with modest computational
time. Although Kalman filtering attains the best solution, Kalman filter-
ing is impracticable even in this small number of voxels in terms of com-
putational time. The solution obtained by partitioned Kalman filtering
is not so good as the solutions obtained by the RPLS method or observ-
able projection Kalman filtering, because of the inaccurate estimates of
the parameters. In this simulation, the superiority of the RPLS method
or observable projection Kalman filtering was demonstrated. However it
is dangerous to generalize this result, since this simulation is too simple
and far from realistic. Further investigation is necessary in the future.

• In the simulation study for comparison of the instantaneous solution
(LORETA) and the dynamical inverse solution (DynLORETA), Dyn-
LORETA shows superior performance in terms of the visibility, RMSE,
and the robustness to the observation noise. While the spatial features
of the LORETA solutions are inherited to DynLORETA, additional im-
provements of the solution become possible through incorporation of tem-
poral information. On the other hand, if the dynamical model has not
been well-chosen, the solutions of DynLORETA tend to be very similar
to the corresponding LORETA solutions, because inappropriate dynam-
ical constraints result in very weak regularization. In addition the better
estimate of the initial state for starting RPLS is an important point for
substantial improvements of whole estimates.

• In an analysis of clinical EEG data we have employed a regional AR(2)
model, characterized by the presence of different dynamics inside and
outside the occipital area. As a result of observation projection Kalman
filtering we have observed two occipital sources which are opposite in
phase during some interval. Both from the parameter estimates and
from the estimated time series at occipital voxels these two sources can
be consider to be the generator of the alpha wave.

In the future the ideas and methods presented in this thesis should be devel-
oped further:

• Information from other brain-imaging modalities (such as fMRI,
NIRS) should be incorporated into the model identification.
This will render it possible to explore physiologically more
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meaningful dynamics and ultimately also result in better in-
verse solutions.

• More realistic situation such as the non-linear dynamics and misspeci-
fication of the model should be taken into consideration in the future
simulation.

• In order to reduce the amount of computation as well as stabilizing the
computation, it is desirable to develop the method for the dimension
reduction of the state.

• The theoretical aspect of three proposed algorithms should be further
investigated. By this, it would be possible to develop more efficient al-
gorithm in time or accuracy. Furthermore filtering algorithms developed
in another research field such as in the data assimilation (Evensen 1994;
Evensen 1997; Evensen 2003) will be examined and incorporated into the
EEG inverse problem.





Part II

Causality Analysis of fMRI Data





Chapter 8

Introduction

8.1 Context

The brain appears to adhere to two fundamental principles of functional orga-
nization, functional specialization and functional integration. The dis-
tinction relates to that between localisationism and connectionism that dom-
inated thinking about cortical function in the nineteenth century. Functional
specialization suggests that a cortical area is specialized for some aspects of
perceptual or motor processing. The cortical infrastructure supporting a single
function may then involve many specialized areas whose union is mediated by
the functional integration among them.

In early 1990s, the outstanding methodology of measuring activities of hu-
man brain, which is called functional Magnetic Resonance Imaging (fMRI)
technique, has been developed. This technique enables us to get the infor-
mation of the activity inside human brains noninvasively. In virtue of this
advantage, various cognitive experiments (for example, visual, auditory and
motor) of human brains have been done largely in order to clarify the relation-
ship between functions and related areas.

The fMRI technique provides temporally successive images reflecting the
change of regional cerebral blood flow, which is believed to result from electrical
neuronal activities on the corresponding local area, with high spatial resolution
but rather low temporal resolution. It seems that so far in fMRI studies the
emphasis has been put on the statistical analysis of how to localize cortical
areas related to a specific cognitive experiment (specialization) (Friston et al.
1995; Büchel et al. 1996; Worsley et al. 2002). Obviously it is more important
and challenging work for deeper understanding of human brains to develop the
statistical analysis of how to connect these localized areas (integration).

Integration within a distributed system is well understood in terms of ’ef-
fective connectivity’. Effective connectivity is defined as "the influence that
one neural system exerts over another" (Friston et al. 1995). For the purpose
of evaluating the effective connectivity, several statistical methods have been
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applied; structural equation model (McIntosh and Gonzalez-Lima 1994), re-
gression based analysis (Friston et al. 1995) and so on. Although these methods
work very well for specifying magnitude of the influence one exerts another,
they can work only in a highly constrained way, typically exploring the con-
nections between a network of brain areas whose anatomy is explicitly defined
by a model (i.e. the direction of the connectivity needs to be prespecified).

This disadvantage, however, can be overcome by causal analysis which
has been developed in the field of time series analysis. The pioneering work
about causality has been done in the literature of Granger 1969, in which
the comprehensive definition of causality based on multivariate time series has
been discussed. His definition is entirely based on ’the predictability of some
series for the others’, and here the flow of time plays a central role. Following
the work of Granger, various measures and tests of causality has been proposed
(Geweke 1982; Geweke 1984; Hosoya 1991; Kaminski et al. 2001). Apart from
these work, Akaike has proposed his measure, Akaike’s Noise Contribution
Ratio (ANCR), in order to characterize and analyze feedback systems (Akaike
1968). His measure is based on the fact that the powerspectrum of a time
series from multivariate AR (MAR) model can be decomposed to the sum of
power of the other series and itself. A crucial advantage of ANCR is that it
is possible to evaluate causal relations between many time series (more than
three) whereas the measures followed by the work of Granger can be applied
to essentially bivariate or block bivariate time series.

Because of low temporal resolution of the fMRI, there have not been so
many works emphasizing times series analysis except very recent works, for
example, an application of a multivariate time series model has been proposed
for determining only directions of the connectivity (Harrison et al. 2003). In
this thesis I would like to propose to apply ANCR as an extension of Harrison’s
method so that both direction and magnitude of the effective connectivity can
be evaluated.

The ANCR will be applied to the data from the random dot experiment.
The ’change’ of the connectivity on the task condition compared with that
on the control condition will be evaluated using the feature of ANCR that
the causal relations can be measured for each periodic component. The result
shows the possibility of this analysis. It should be noted that for this connec-
tivity analysis, the data was acquired in higher sampling rate of 1 sec. than in
typical sampling rate of 3 sec.

8.2 Organization of Part II

In Chap.9, previous works of the causality analysis in time series field are
reviewed briefly. The definition of Granger causality and the derivation of
Akaike’s noise contribution ration (ANCR) are described here. In Chap.10,
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the whole procedure for evaluating the change of the effective connectivity is
explained in detail. Chap.11 presents the results for the data from the random
dot experiment and the discussion about the results is followed.





Chapter 9

Causality analysis in time series

The term, effective connectivity has been defined as "the influence that
one neural system exerts over another" (Friston et al. 1995) or "the direct
effect one region has on another" (McIntosh 2000). In order to evaluate the
effective connectivity, we have to determine the direction and the magnitude of
the influence (effect). In fMRI studies, the structural equation model (SEM),
where the direction of the influence needs to be determined apriori, has mainly
been employed for this purpose. The crucial information of the direction,
however, can be provided by the causality analysis on multivariate time
series data.

In this chapter, the important works about the causality analysis are re-
viewed. At first the notion of the causality in time series is presented ac-
cording to the paper of Granger 1969. Secondly the main tool for evaluating
the effective connectivity in this thesis, which is referred to as Akaike’s noise
contribution ratio (ANCR) (Akaike 1968), is introduced.

9.1 Granger Causality
It could be the acceptable statement "the cause precedes the results" for ev-
eryone. Based on this statement, Granger has explicitly defined the notion of
the "causality" in time series analysis.

Let’s define the following notations at first.

• At : a a stationary stochastic process

• Āt : the set of past values {At−1, At−2, · · · }.
• Pt(A|B) : the optimum, unbiased, least-squares predictor of At using the

set of values Bt.

• εt(A|B) : the predictive error series, that is, At − Pt(A|B).

• σ2(A|B) : the variance of εt(A|B).
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Furthermore let Ut be all the information in the universe and Ut − Yt be all
this information apart from the specified series Yt. Then He has defined the
causality as,

Definition 1 (Causality) If σ2(X|Ū) < σ2(X|U − Y ), we say that Y is
causing X, denoted by Yt ⇒ Xt. We say that Yt is causing Xt if we are
better able to predict Xt using all available information than the information
apart from Yt had been used.

In practical, the unrealistic availability of the universal information U is re-
placed by a set of related timeseries in an application.

9.2 Akaike’s Noise Contribution Ratio
This ratio was developed to characterize the feedback system consisting of
several related time series (Akaike and Nakagawa 1988). The linear feedback
can be modeled by the following Multivariate AutoRegressive (MAR),

ZZZt =

p∑
i=1

A(i)ZZZt−i + εεεt (9.1)

where εεεt is a white noise process with the distribution N(0, Cεεε), called an
"innovation" process. The d × 1 vector, ZZZt = (z1,t, · · · , zd,t)

′ is comprised of
the ensemble of d time series. Each time series in the system is driven by
the innovation εεεt (t = 1, 2, · · · ) and is evolving through the d × d coefficient
matrices, A(i)s.

Through this section, we assume the "causality condition" for the MAR
model, which can be checked by examining whether all solutions of the char-
acteristic function c(λ),

c(λ) = det
(
I −

p∑
i=1

A(i)λi
)

= 0

are located outside the unit circle. This condition guarantees that the present
data can be described only with the terms of the past innovations, but not
influenced by the future innovations.

9.2.1 ANCR in frequency domain

ANCR has originally been developed so as to measure the contribution power
of another time series on the power of one time series in frequency domain.
ANCR can be computed from the parametric spectrum of MAR model.
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The parametric spectrum of the MAR model (9.1) can be calculated from
the AR coefficients A(i), (i = 1, · · · , p) and the innovation covariance matrix
Cεεε as follows,

P (f) = H(f)CεεεH(f)′, (9.2)

where f denotes the frequency ranging from 0 to 0.5 and P (f) denotes the
power spectrum matrix, where the diagonal entry Pii(f) and the non-diagonal
entry Pij(f) represent the power spectrum of the ith time series zi,t and the
cross spectrum between zi,t and zj,t, respectively. The matrix H(f) describing
the transfer functions (frequency response) from a set of the innovation series
εεεt to a set of the time series ZZZt is given by

H(f) =
(
I −

p∑
j=1

A(j) exp{−i2πfj}
)−1

, (9.3)

where i =
√−1.

Here we further assume that the innovations are uncorrelated each other,
that is, the covariance matrix Cεεε is diagonal,

Cεεε = diag(σ2
1, · · · , σ2

d). (9.4)

Then we obtain the following equations by directly calculating Eq.(9.2),

Pii(f) =

d∑
j=1

|Hij(f)|2σ2
j , i = 1, · · · , d. (9.5)

This equation shows that the power spectrum of zi,t of the frequency com-
ponents f can be decomposed to d terms |Hij(f)|2σ2

j , j = 1, · · · , d, each of
which can be interpreted as the power of the jth innovation εj,t transferring to
zi,t via the transfer function Hij(f). Thus |Hij(f)|2σ2

j can be regarded as the
power contribution of the innovation εj,t on the power spectrum of zi,t. Finally
ANCR is defined as a ratio of each contribution to the power spectrum Pii(f),

Rj→i(f) =
|Hij(f)|2σ2

j

Pii(f)
. (9.6)

ANCR is computed for every combination of i and j and for every frequency
f , therefore the contribution can be evaluated for each periodic component.

I would like to remark that since the diagonal innovation covariance matrix
is a crucial assumption in the derivation, the diagonality of an estimated inno-
vation covariance matrix should be checked in the application of this method.
A further remark is that the extension of ANCR has been proposed so that the
contribution can be measured without the assumption of a diagonal innovation
covariance matrix (Tanokura and Kitagawa 2003).
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9.2.2 ANCR in time domain

The amount of the information containing in ANCR as have defined in Eq.(9.6)
is huge and the result is sometimes sensitive to the estimates. These fact
cause the difficulty of interpreting the result, especially in the case that the
comparison of two results of ANCR is necessary as in this study. Motivated by
the need of some summary of ANCR, ANCR in time domain will be introduced
here. From the author’s limited knowledge, there is not any report about this
issue, though the introduction of this measure is straightforward.

Under the causality condition, the MAR model (9.1) can be represented by
the infinite sum of the past innovations as

ZZZt =
∞∑

s=0

M(s)εεεt−s (9.7)

where M(s), so-called the impulse response function, can be calculated from

M(s) =

min(p,s)∑
k=0

A(k)M(s − k) (9.8)

with M(0) = I (Brockwell and Davis 1996). Taking variance of both sides of
Eq.(9.7) gives

Var(ZZZt) =
∞∑

s=0

M(s)CεεεM
′(s). (9.9)

In the same way as the definition of ANCR in frequency domain, the variance
of the time series zi,t, which is the ith diagonal element of Var(ZZZt), can be
represented by the sum of each innovation contribution as,

S2
i =

d∑
j=1

(
σ2

j

∞∑
s=0

M2
ij(s)
)

(9.10)

where S2
i is the variance of zi,t and Mi,j(s) is the ijth element of M(s). Here

the innovation covariance Cεεε is assumed to be diagonal again.
Then, ANCR in time domain can be defined as follows,

ri→j =

σ2
j

∞∑
s=0

M2
ij(s)

S2
i

. (9.11)

In practical, the numerical computation of M(s), s = 0, 1, · · · is necessary
for the evaluation of ANCR Eq.(9.11). The summation of M(s) in Eq.(9.11),
hence, is truncated up to a certain finite number. When any characteristic
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roots of c(λ) are not located near the unit circle, the truncation of a moderate
number causes almost no numerical error.

The relationship between ANCR in frequency domain and ANCR in time
domain can be seen from the spectral representation of the autocovariance
function as provided by,

Γ(h) =

∫ 0.5

−0.5

P (f)ei2πfhdf. (9.12)

Here Γ(h) is the autocovariance function of ZZZt.
By setting h = 0 and substituting the representation of the parametric

spectrum (9.2) in Eq.(9.12), the following equation is obtained:

Var(ZZZt) =

∫ 0.5

−0.5

H(f)CεεεH(f)′df. (9.13)

Comparing the diagonal element in both sides, we obtain the equation as
follows:

S2
i =

d∑
j=1

(
σ2

j

∫ 0.5

−0.5

|Hij(f)|2df
)

(9.14)

From this equation and Eq.(9.10), ANCR in time domain can be interpreted
as the averaged ratio over all the frequency components, whereas ANCR in
frequency domain provides the contribution ratios for each frequency.





Chapter 10

Data analysis

Firstly the experiment and the aim of data analysis are shown and then the
entire procedure to accomplish this aim is explained.

10.1 Experiment

In this thesis, we employ the connectivity analysis for the data acquired from
a simple random dot experiment. In this experiment, a screen is set above a
face of a subject lying in the MRI scanner. During the data acquisition, the
screen displays two different objects corresponding to two conditions of the
experiment as follows:

• Task condition : many random dots are moving radial.

• Control condition : only a red point is fixed on the center.

The timing of the task condition of the data acquisition is shown in Fig.10.1.
Two sessions have been executed: the first session is constituted of the rep-
etition of the task and control condition of duration 30 sec. and the second
session is constituted by the continuous control condition of duration 300 sec.

The data, with temporal resoluti on of 1 sec., has been acquired using T2∗-
weighted, gradient echo, echo planer imaging sequences with the 3 Tesra MRI
scanner (Allegra; Simens, Erlangen, Germmany).

10.2 Aim

In previous phygiological experiments, it is well confirmed that three regions,
called the primary visual cortex (V1), visual motion detection area (V5) and
the posterior parietal cortex (PP) for integration of spatial visual information,
are associated with perception of visual motion.



88 Data analysis

50 100 150 200 250

0

0.2

0.4

0.6

0.8

1

Sec.

Session 1

Control Control Control Control Control 

Task Task Task Task 

50 100 150 200 250

0

0.2

0.4

0.6

0.8

1

Sec.

Session 2

Control 

Figure 10.1: Block design of the random dot experiment.

The aim of this study is to evaluate the ’change’ of the connectivity among
these regions on the task and control condition. For this purpose, two strategies
are taken in this thesis.

A1. By fitting the MAR model to the data of the first session, the connectivity
on the task condition can be evaluated from ANCR at the frequency f0

which corresponds to the period of the task condition. In contrast, by
fitting the MAR model to the data of the second session, ANCR at the
frequency f0 may not reflect any task related behavior.

A2. Fit the multiplicative exogenous-dependent multivariate AR (MEMAR)
model for the data only in the first session as follows,

ZZZt =

p∑
i=1

(A(i) + B(i)st−d)ZZZt−i + εεεt (10.1)

where st models the visual stimulus (st = 1 when task condition, st = 0
otherwise). From A(1), · · · , A(p) and Cεεε, ANCR on the control condition
is computed, whereas from A(1)+B(1), · · · , A(p)+B(p) and Cεεε, ANCR
on the task condition is computed.

10.3 Procedure
The procedure for evaluating the effective connectivity is outlined is as follows:

(i) determine the regions of interest (ROIs) and pick up the time series from
each region.



10.3 Procedure 89

(ii) fit the model for the time series obtained above.

(iii) evaluate the effective connectivity among ROIs using ANCR as defined
in the previous section.

In the following subsections, the detailed issues in each step of the procedure
will be explained.

10.3.1 Specify ROIs

The fMRI data provides huge dimensional time series, whose dimension corre-
sponds to the number of voxels in the brain (typically one hundred thousand
of voxels). Before fitting the time series model, a set of time series must be
selected from the regions of interest related to an experiment.

In this study, the software ’SPM’ (http://www.fil.ion.ucl.ac.uk/spm/) is
used for this purpose, because this software is the most common in the fMRI
community and this software is fully equipped with well-established image
processing tools such as for the realignment of head movement and for the
registration to the standard brain.

The following preprocess have been done:

P1. "Slice timing" for adjusting different sampling timing in the acquisition
of each slice.

P2. "Realignment" for adjusting the movement of the head.

P3. "Normalizing" for the registration to the standard brain.

Then, the ROIs are determined by the following statistical procedure,

S1. Making the t-map by fitting the general linear model voxel by voxel
(Friston et al. 1995; Worsley et al. 2002).

S2. Selecting the regions so that each region consists of voxels within a sphere
of radius 6mm, where the center voxels are chosen as the local maximizers
of t-values.

S3. Pick up the representative time series from each region specified in the
step S2. The first principle component of all the time series within each
region has been chosen as the representative.

The specified regions are shown in Fig.10.3 and a set of time series chosen are
shown in top three panels in Figs.11.1 and 11.2 for the first and the second
session, respectively.
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10.3.2 Model fitting of time series in ROIs

After choosing the time series from ROIs, the multivariate time series model
is fitted for the evaluation of the effective connectivity. The detailed issues for
estimating the parameters in the MEMAR model (10.1) are discussed here.
From now we assume that the distribution of innovation follows the normal
distribution.

Maximum Likelihood Estimation

Let’s define Θ as the collection of the AR coefficients as in (10.4). The log-
likelihood is represented as,

L(ΘΘΘ, Cεεε) = log p(ZZZ1, · · · ,ZZZT ;ΘΘΘ, Cεεε)

=
T∑

t=p+1

log p(ZZZt|ZZZt−1, · · · ,ZZZt−p;ΘΘΘ, Cεεε) + log p(ZZZ1, · · · ,ZZZp;ΘΘΘ, Cεεε).

(10.2)

The conditional distribution in Eq.(10.2) is given by

p(ZZZt|ZZZt−1, · · · ,ZZZt−p;ΘΘΘ, Cεεε) ∼ N(Z̄ZZt, Cεεε), (10.3)

where

Z̄ZZt =

p∑
i=1

(A(i) + B(i)st−d)ZZZt−i ≡ ΘΘΘ′Xt

Xt ≡ (ZZZ ′
t−1, · · · ,ZZZ ′

t−p, st−dZZZ
′
t−1, · · · , st−dZZZ

′
t−p)

′

ΘΘΘ′ ≡ (A(1), · · · , A(p), B(1), · · · , B(p)). (10.4)

The log-likelihood (10.2) can be rewritten in the form,

L(ΘΘΘ, Cεεε) = C +
(T − p)

2
log |C−1

εεε | − 1

2

T∑
t=p+1

(ZZZt −ΘΘΘ′Xt)
′C−1

εεε (ZZZt −ΘΘΘ′Xt)

(10.5)

where C is a constant term and the term log p(ZZZ1, · · · ,ZZZp;ΘΘΘ, Cεεε) has been
neglected (when T is large, this term is small compared with the second and
third terms in Eq.(10.5)). The maximum likelihood (ML) estimator can be
obtained as the maximizer of L(ΘΘΘ, Cεεε), which is resulting in

Θ̂̂Θ̂Θ′ =
[ T∑

t=p+1

ZZZtX ′
t

][ T∑
t=p+1

XtX ′
t

]−1

(10.6)

Ĉεεε =
1

T − p

T∑
t=p+1

ε̂̂ε̂εtε̂̂ε̂ε
′
t (10.7)



10.3 Procedure 91

where the innovation estimate is given by

ε̂̂ε̂εt = ZZZt − Θ̂̂Θ̂Θ′Xt. (10.8)

The jth row of Θ̂̂Θ̂Θ′ is

θ̂̂θ̂θ′j =
[ T∑

t=p+1

zj,tX ′
t

][ T∑
t=p+1

XtX ′
t

]−1

(10.9)

where θθθj = (Aj1(1), · · · , Ajd(1), · · · , Ajd(p), · · · , Bjd(p))′ is a vector of size
2pd × 1. The variance of θ̂̂θ̂θj is given by

Var(θ̂̂θ̂θj) = σ̂2
j

[ T∑
t=p+1

XtX ′
t

]−1

, (10.10)

where σ̂2
j is the jth diagonal element of Ĉεεε. Note that the ML estimators of

the coefficients (10.6) is equivalent to the ordinary least squares estimators
(see the chapter 11 of Hamilton 1994 for detail).

Selection of p and d

The parameters, p and d are preferably determined by some information crite-
ria such as AIC (Akaike 1973), SIC (Schwarz 1978), AICc (Hurvich and Tsai
1989) and so on. In this study we choose to employ AIC because of its simple
form and wide use of this criterion in various applications. AIC is defined as
bellows:

AIC = −2L(Θ̂̂Θ̂Θ, Ĉεεε) + 2Np (10.11)

where Np is the number of parameters in the model for fitting. AIC is the
asymptotically unbiased estimates of Kullback-Leibler (KL) discrepancy be-
tween the true model and the fitted model. Therefore the minimization of
these criteria corresponds to choosing the nearest model from the true model
in the sense of KL discrepancy. The estimators of p and d are determined by
calculating AIC for each p and d in some range and by choosing the minimizers.

T -value truncation

As has shown in Chap.9, rather complex computation is necessary for calcu-
lating ANCR. If we employ the estimated parameters for this purpose, ANCR
may give very sensitive result due to the estimation error. In order to obtain
more reliable result, the t-value truncation technique is proposed to employ. In
this technique, roughly speaking, we regard AR coefficients of which estimates
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are approximately 0 as exact 0. This can be done by judging whether the
t-value of each estimator is less than the pre-defined threshold.

Here this technique is not employed for each element of Θ̂ij , but for a
collection of the coefficients describing the causality from zj,t to zi,t, that is,
â̂âaij ≡ (Âij(1), · · · , Âij(p))′ for i, j = 1, · · · , d, because the estimates of these
coefficients are usually highly correlated. Note that T -value truncation to
the collection of these coefficients corresponds to the test of Granger’s non-
causality from zj,t to zi,t.

Let us define an indicator matrix Ca
ij consisting of 0 or 1 entries so that

â̂âaij = Ca
ijθ̂̂θ̂θi (10.12)

is satisfied. From Eq.(10.10), the variance of â̂âaij can be obtained as

V̂ij = Ca
ijVar(θ̂̂θ̂θj)C

a′
ij . (10.13)

Since the distribution of the statistics â̂âa′
ijV̂

−1
ij â̂âaij is according to χ2

d, where d
is the freedom, we judge that the vector â̂âaij is large from (0, · · · , 0)′ with
significance level α when

â̂âa′
ijV

−1
ij â̂âaij > c

χ2
d

1−α (10.14)

is satisfied, where c
χ2

d
1−α is the upper α% point of the χ2

d distribution. In case
of Eq.(10.14) being satisfied, the estimators â̂âaij are kept, otherwise â̂âaij is set
to (0, · · · , 0)′. For every i, j = 1, · · · , d, Eq.(10.14) is examined.

This technique could provide more robust result. Furthermore Eq.(10.14)
is essentially equivalent to the Wald test under the null hypothesis H0 : aaaij =
(0, · · · , 0)′. Because it is difficult to constitute the test on the ratios, this test
may help to judge the significance of the connectivity. In this study, the level
α = 0.01 is used.
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Figure 10.2: Schematic figure of Eq.(10.14). The ellipse represents a contour of 1 − α%.
If the origin is located in this ellipse, â̂âaij is set to (0, · · · , 0).
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Figure 10.3: Result of t-map (top) and the locations of three ROIs (V1, V5, PP) (bottom)
using the software "SPM".



Chapter 11

Result

The results of the connectivity analysis among three ROIs (V1, V5 and PP)
are shown in this chapter. As have mentioned in Sec.10.2, for evaluating the
change of the effective connectivity, two following strategies are taken and
compared.

A1. By fitting the MAR model to the data of the first session, the connectivity
on the task condition can be evaluated from ANCR at the frequency f0

which corresponds to the period of the task condition. In contrast, by
fitting the MAR model to the data of the second session, ANCR at the
frequency f0 may not reflect any task related behaviors.

A2. Fit the multiplicative exogenous-dependent multivariate AR model for
the data only in the first session as follows,

ZZZt =

p∑
i=1

(A(i) + B(i)st−d)ZZZt−i + εεεt

where st models the visual stimulus (st = 1 when task condition, st = 0
otherwise). From A(1), · · · , A(p) and Cεεε, ANCR on the control condition
is computed, whereas from A(1)+B(1), · · · , A(p)+B(p) and Cεεε, ANCR
on the task condition is computed.

The results of the analysis [A1] and [A2] will be shown in Sec.11.1 and 11.2,
respectively and the discussion of the results will be followed.

11.1 Effective connectivity via MAR model
The time series of the first session and the second session from three ROIs are
shown on three top panels in Figs.11.1 and 11.2, respectively. The MAR model
of order p = 6, which is determined by AIC, is fitted to the time series of each
session. The time series, the histogram and the autocorrelation function of the
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innovations are also shown on another panels in the same figures. In addition,
the sample correlation of the innovations can be calculated as

 1 0.27 −0.01

0.27 1 0.17

−0.01 0.17 1


 ,


 1 0.00 −0.18

0.00 1 0.16

−0.18 0.16 1


 ,

for the first and the second sessions. From the diagnosis of the innovations,
the MAR model can fit to the data in both two sessions reasonably well and
the assumption for calculating ANCR, Eq.(9.4), is acceptable. Therefore the
evaluation of the effective connectivity via ANCR could be applicable.

In Fig.11.3, the parametric spectrum and ANCR calculated from the esti-
mated model is shown. The top three figures illustrate the power spectrum of
three ROIs. On the task condition, the power spectrum of V1 has a clear peak
at the frequency f0 = 0.018 HZ, which almost corresponds to the period of
experiment 60 sec., whereas the power spectrum of PP has a clear peak at the
frequency f1 = 0.031 HZ , which is a harmonic component of f0 (two vertical
dotted lines denotes the frequencies f0, f1). We can observe that at the fre-
quency f0, the strength of the connectivity in bottom-up direction is increasing
on the task condition, whereas that in top-down direction is increasing at the
higher frequency f1.

The same result of ANCR at the frequencies f0, f1 and in time domain is
represented as the bar graphs in Fig.11.4. It is easily observed that at the
frequency f0 the area occupied by V1 on the task condition is larger than that
on the continuous control condition, which means the bottom-up connectivity
is strengthened. In contrast, at the frequency f1 the area occupied by PP
on the task condition is increasing, which means the top-down connectivity is
strengthened. ANCR in time domain reflects the above-mentioned observa-
tions (i.e. a part of both the bottom-up and top-down connectivity increases),
because this can be regarded as averaged ANCR over all the frequencies. In
Tab.11.1, the differences of the ratios between two conditions are summarized.
Only values larger than 0.1 are shown in the table.
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Table 11.1: Change of ANCR via the MAR model.

f0 f1 time
V1→V5 0.65 - 0.35
V1→PP 0.2 - -
V5→PP 0.15 - -
PP→V1 - 0.3 -
PP→V5 - 0.55 0.2
V5→V1 - - -

11.2 Effective connectivity via MEMAR model
The time series of the first session are only employed for this analysis [A2],
and are shown on three top panels in Fig.11.5. Then the MEMAR model of
order p = 6 and d = 6, determined by AIC, is fitted. The time series, the
histogram and the autocorrelation function of the innovations are also shown
on another panels in the same figure. In addition, the sample correlation of
the innovations can be calculated as

 1 0.28 0.00

0.28 1 0.17

0.00 0.17 1


 .

From the diagnosis of the innovations, the model fitting is reasonably good
and the assumption for calculating ANCR, Eq.(9.4), is acceptable. Therefore
the evaluation of the effective connectivity via ANCR could be applicable.

In Fig.11.6, the parametric spectrum and ANCR calculated from the esti-
mated model is shown. The top three figures illustrate the power spectrum of
three ROIs. Similar to the previous analysis [A1], on the task condition, the
power spectrum of V1 has a clear peak at the frequency f0 = 0.017 HZ, whereas
the power spectrum of PP has a clear peak at the frequency f1 = 0.033 HZ
(two vertical dotted lines denotes the frequencies f0, f1). We can observe that
at the frequency f0, the strength of the connectivity in bottom-up direction is
increasing on the task condition, whereas almost no change can be observed
at the higher harmonic frequency f1.

The same result of ANCR at the frequencies f0, f1 and in time domain is
represented as the bar graphs in Fig.11.4. It is easily observed that at the
frequency f0 the area occupied by V1 on the task condition is larger than
that on the control condition, which means the bottom-up connectivity is
strengthened. ANCR in time domain shows the complete dominance of V1 on
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all the ROIs on the task condition, which can not be observed in ANCR of the
frequencies f0, f1. This may be due to the numerical error in computation or
indicates that ANCR in time domain may not be an appropriate measure in
some cases. In Tab.11.2, the differences of the ratios between two conditions
are summarized. Only values larger than 0.1 are shown in the table.

Table 11.2: Change of ANCR via the MEMAR model.
f0 f1 time

V1→V5 0.4 - 0.7
V1→PP 0.3 - 0.8
V5→PP - - -0.15
PP→V1 - - -
PP→V5 - - -0.2
V5→V1 - - -

11.3 Interpretation
As to the change of the effective connectivity around the same periodic com-
ponent as the visual stimulus, both the analyses [A1] and [A2] demonstrate
similar increase of the bottom-up connectivity on the task condition. However
there is some discrepancy in the interpretation.

The MEMAR model fitting in [A2] can be considered as separately fitting
a set of two different AR models to the time series on the task condition
and on the control condition, respectively. Therefore each AR model should
not describe the behavior of the whole series such as the peak of the slow
component f0, but should describe the behavior of rather fast component. In
this sense, it is very difficult to interpret the meaning of the peak f0 of the
power spectrum, consequently, the meaning of ANCR at f0.

On the other hand, in [A1], the AR model is fitted to the whole time
series of the first session. As expected the parametric power spectrum shows
a clear peak at the frequency f0 same as the designed stimulus period and
ANCR at this frequency can be interpreted as the task related connectivity.
As a contrast to the task related connectivity, ANCR at the same frequency
f0 has been calculated by fitting the AR model to the whole time series of the
second session when no stimulus. Thus the difference between ANCRs at the
frequency f0 of the first session and of the second session can be interpreted as
the change of the connectivity caused by the task. This interpretation may be
understandable if we imagine the electromagnetic wave of the radio broadcast
which conveys the information using a certain frequency band.
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In Tab.11.3, for 5 subjects, the change of the effective connectivity, is sum-
marized using the difference of ANCR at the frequency f0 obtained by the
analysis [A1] as a measure. It can be observed that the bottom-up connectiv-
ity tend to increase on the task condition. It should be noted that ANCR for
the first session shows the similarity among the subjects, whereas ANCR for
the second session differs subject by subject very much.

Table 11.3: Change of the effective connectivity at the frequency f0 via the MAR model.
subject1 subject2 subject3 subject4 subject5

V1→V5 0.61 0.55 0.13 0.68 -
V1→PP 0.27 0.53 0.40 - -
V5→PP 0.15 -0.2 - - 0.29
PP→V1 - - - - -
PP→V5 - - 0.12 -0.38 -
V5→V1 - 0.12 - - -0.10
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Figure 11.1: Time series from three regions and their innovations by MAR model fitting
in the task condition. In the top row, the time series extracted from three regions (V1, V5,
PP) are shown. Time series, histogram and the autocorrelation function of the innovations
(1-step prediction error) obtained by MAR model fitting are shown from the second to the
bottom row, respectively.
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Figure 11.2: Time series from three regions and their innovations by MAR model fitting
in the continuous control condition. In the top row, the time series extracted from three
regions (V1, V5, PP) are shown. Time series, histogram and the autocorrelation function
of the innovations (1-step prediction error) obtained by MAR model fitting are shown from
the second to the bottom row, respectively.



102 Result

0 0.1 0.2
0

0.01

0.02

Freqency

P
o
w
e
r 
S
p
e
c
tr
a
l

V1

0 0.1 0.2
0

0.5

1

R
a
ti
o

V5 -> V1

0 0.1 0.2
0

0.5

1

Freqency

R
a
ti
o

PP -> V1

0 0.1 0.2
0

1

2

x 10
-3

P
o
w
e
r 
S
p
e
c
tr
a
l

V5

0 0.1 0.2
0

0.5

1

Freqency

R
a
ti
o

V1 -> V5

0 0.1 0.2
0

0.5

1

Freqency

R
a
ti
o

PP -> V5

0 0.1 0.2
0

1

2

x 10
-3

P
o
w
e
r 
S
p
e
c
tr
a
l

PP

0 0.1 0.2
0

0.5

1

R
a
ti
o

V1 -> PP

0 0.1 0.2
0

0.5

1

Freqency

R
a
ti
o

V5 -> PP

Figure 11.3: Power spectra of three regions of interest (V1, V5, PP) and ANCR among
those regions on the task condition (thick line) and the continuous control condition (thin
line). The parametric power spectra of V1, V5 and PP are plotted from the left to right in
the top row, respectively. The graphs in three another rows show ANCR for all combinations
of two regions. The horizontal axis of all the graphs represents the frequency of unit HZ.



11.3 Interpretation 103

0

0.2

0.4

0.6

0.8

1
ANCR at 0.018 Hz

T
a
s
k

  V1    V5    PP  

0

0.2

0.4

0.6

0.8

1
ANCR at 0.018 Hz

C
o
n
ti
n
u
o
u
s
 C
o
n
tr
o
l

  V1    V5    PP  

0

0.2

0.4

0.6

0.8

1
ANCR at 0.031 Hz

  V1    V5    PP  

0

0.2

0.4

0.6

0.8

1
ANCR at 0.031 Hz

  V1    V5    PP  

0

0.2

0.4

0.6

0.8

1
ANCR in time domain 

  V1    V5    PP  

0

0.2

0.4

0.6

0.8

1
ANCR in time domain 

  V1    V5    PP  

V1
V5
PP

Figure 11.4: Bar graph representation of ANCR for two certain periodic components and
of ANCR in time domain. In the top three panels, from the left to the right panel, ANCR
on the task condition are shown for the periodic components of the frequency 0.018 HZ
(around 55 sec./cycle), 0.031 HZ (around 32 sec./cycle) and ANCR in time domain. In the
bottom three panels, ANCR on the continuous control condition are shown for the same
components as the top panels.
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Figure 11.5: Time series from three regions and their innovations by MEMAR model
fitting. In the top row, the time series extracted from three regions (V1, V5, PP) are
shown. Time series, histogram and the autocorrelation function of the innovations (1-step
prediction error) obtained by MAR model fitting are shown from the second to the bottom
row, respectively.
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Figure 11.6: Power spectra of three regions of interest (V1, V5, PP) and ANCR among
those regions on the task condition (thick line) and the control condition (thin line). The
parametric power spectra of V1, V5 and PP are plotted from the left to right in the top
row, respectively. The graphs in three another rows show ANCR for all combinations of two
regions. The horizontal axis of all the graphs represents the frequency of unit HZ.
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Figure 11.7: Bar graph representation of ANCR for two certain periodic components and
of ANCR in time domain. In the top three panels, from the left to the right panel, ANCR
on the task condition are shown for the periodic components of the frequency 0.017 HZ
(around 59 sec./cycle), 0.033 HZ (around 30 sec./cycle) and ANCR in time domain. In the
bottom three panels, ANCR on the control condition are shown for the same components
as the top panels.
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Discussion

In the Part II, for the purpose of evaluating the change of the effective connec-
tivity, two strategies [A1], [A2] have been investigated. The key tools of this
research are the multivariate AR model (MAR) and Akaike’s noise contribu-
tion ratio (ANCR), which measures the contributions of another time series
on one time series for every periodic component.

Taking advantage of ANCR for the component of the same period as visual
stimulus, in the analysis [A1] the change of the effective connectivity can be
evaluated as the difference of ANCR from the experiments with periodic task
and with continuous control. The strategy [A2], in which two different AR
models are fitted to time series on the task and the control condition, also
provides the similar result as that of [A1]. The difficulty, however, occurs in
the interpretation of the peak frequency of the power spectrum in the analysis
[A2], whereas in the analysis [A1], the period of the stimulus is fully used for
the evaluation of the connectivity. Therefore the result of the strategy [A1]
has been taken as the final conclusion.

From the result of [A1], we can observe that the bottom-up connectivity
tends to increase on the task condition, compared with the continuous control
condition. However, we have to be too careful to the interpretation of the
result because temporal resolution of the phenomenon in the fMRI data is
much slower than that of neuronal activities. Therefore this result can not
directly reflect connectivity on neuronal signals among the regions. Hence,
what we can say from the result is that, for instance, the local cerebral blood
flow in V1 better explains the future behavior of the local cerebral blood flow
in V5 on the task condition than that on the control condition.

As the methodology to evaluate the effective connectivity, the multivariate
time series approach demonstrated in this thesis is contrast to the structural
equation modeling as to the freedom how to specify the direction of connec-
tivity. In the SEM, the direction has to be specified a priori by the analyst,
whereas in the multivariate time series approach, this direction can be au-
tomatically determined based on the temporal order of events (i.e. Granger
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causality). There is a possibility to misspecify the connectivity which does not
exist in anatomy by the multivariate time series approach. Therefore in the
presence of the anatomical knowledge, the method to incorporate these knowl-
edge into the time series approach is desirable. The multivariate time series
approach combined with the Bayesian estimation would be a very promising
approach and it is expected to provide more meaningful knowledge about con-
nectivity.

The following points could be very important and challenging in the future,

• The Bayesian estimation should be applied instead of the maximum like-
lihood estimator in order to involve anatomical prior knowledge about
the connectivity.

• In order to confirm the validity of the method proposed here, we should
apply to the various experimental data.

• For the knowledge discovery the inter-subject analysis is very important,
thus the statistical method for this purpose is highly desired.

• The difference of ANCR between two conditions may not be appropriate
for quantifying the change of effective connectivity. Another causality
measures should be applied or developed.



Appendix A

Calculation of ABIC for WMN
method

Here calculation of ABIC is shown for the WMN method. The result of this
appendix can be easily applied to a class of the WMN solution by adjusting
a weight matrix W . For example, setting W = L, ABIC for the LORETA
method can be obtained.

The likelihood and prior function for WMN solution are given by

p(vvv|jjj; σ2) ∼ N(Kjjj, σ2Cεεε) (A.1)
p(vvv; τ 2) ∼ N(0, τ 2(W ′W )−1). (A.2)

The detailed calculation of ABIC is as follows. Firstly the posterior distribu-
tion can be expressed by,

p(jjj|vvv; σ2, τ 2) = p(vvv|jjj; σ2)p(jjj; τ 2)

= (2π)−
Ne
2 (2π)−

Ns
2 |σ2Cεεε|− 1

2 |τ 2(W ′W )−1|− 1
2

exp
{
− 1

2σ2
||vvv − Kjjj||2Cεεε

}
exp
{
− 1

2τ 2
||Wjjj||2

}
= (2π)−

Ne+Ns
2 |σ2Cεεε|− 1

2 |τ 2(W ′W )−1|− 1
2 exp

{
− 1

2σ2
E(jjj; λ)

}
= (2π)−

Ne+Ns
2 |σ2Cεεε|− 1

2 |τ 2(W ′W )−1|− 1
2 exp

{
− 1

2σ2
E (̂ĵĵj; λ)

}
exp
{
− 1

2σ2
(jjj − ĵ̂ĵj)′(K′C−1

εεε K + λ2W ′W )(jjj − ĵ̂ĵj)
}

(A.3)

where λ ≡ σ/τ , E(jjj; λ) and ĵ̂ĵj which is the minimizer of E(jjj; λ) are given by

E(jjj; λ) = ||vvv − Kjjj||2
C−1

εεε
+ λ2||Wjjj||2.

ĵ̂ĵj = (K′C−1
εεε K + λ2W ′W )−1K′C−1

εεε vvv.
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From the third equation to the fourth equation, the next arrangements are
employed

exp
{
− 1

2σ2
E(jjj; λ)

}
= exp

{
− 1

2σ2

∣∣∣∣∣∣[C− 1
2

εεε vvv

0

]
−
[
C

− 1
2

εεε K

λW

]
jjj
∣∣∣∣∣∣2}

= exp
{
− 1

2σ2
(||v̆vv − K̆ĵ̂ĵj + K̆ĵ̂ĵj − K̆jjj||2)

}
= exp

{
− 1

2σ2
(||v̆vv − K̆ĵ̂ĵj||2 + ||K̆(jjj − ĵ̂ĵj)||2)

}
,

where v̆vv =

[
C

− 1
2

εεε vvv

0

]
and K̆ =

[
C

− 1
2

εεε K

λW

]
.

Because the second exponential of Eq.(A.3) includes the integrand jjj, the
marginal distribution of vvv becomes

p(vvv; σ2, τ 2) =

∫
p(vvv|jjj; σ2)p(jjj; τ 2)djjj

= (2π)−
Ne
2 |σ2Cεεε|− 1

2 |τ 2(W ′W )−1|− 1
2 exp

{
− 1

2σ2
E (̂ĵĵj; λ)

}
|σ2(K′C−1

εεε K + λ2W ′W )−1| 12 . (A.4)

Then we obtain (-2) times type-II log-likelihood as follows,

M(σ, τ) = Ne log 2π + log |σ2Cεεε| + log |τ 2(W ′W )−1| + 1

σ2
E (̂ĵĵj; λ)

− log |σ2(K′C−1
εεε K + λ2W ′W )−1|

= Ne log 2π + log |σ2Cεεε| + log |τ 2(W ′W )−1| + 1

σ2
E (̂ĵĵj; λ)

− log |σ2(K′C−1
εεε K + λ2W ′W )−1|

= Ne log 2π + log |σ2Cεεε| + 1

σ2
E (̂ĵĵj; λ) + log

∣∣∣ (W ′W )−1

λ2(K′C−1
εεε K + λ2W ′W )−1

∣∣∣.
(A.5)

Using the singular value decomposition of K̄ ≡ C
−1/2
εεε KW−1

K̄ = USV ′,

The third and fourth term in (A.5) can be further simplified as,

E (̂ĵĵj; λ) = ||C− 1
2

εεε (vvv − Kĵ̂ĵj)||2 + λ2||Wĵ̂ĵj||2
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2

εεε vvv||2 + λ2||(K̄′K̄ + λ2I)−1K̄′C
− 1

2
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)
ṽ̃ṽv
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ṽ̃ṽv (A.6)
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and

log
∣∣∣ (W ′W )−1

λ2(K′C−1
εεε K + λ2W ′W )−1

∣∣∣ = − log |λ2(K̄′K̄ + λ2I)−1|
= − log |λ2(V S ′SV ′ + λ2I)−1|
= − log |λ2(S ′S + λ2I)−1|

= − log
Ns∏
i=1

λ2

s2
i + λ2

=

Ne∑
i=1

log
s2

i + λ2

λ2
. (A.7)

where ṽ̃ṽv = U ′C−1/2
εεε vvv and si is the ith diagonal component of the matrix S.

Substituting Eqs.(A.6) and (A.7) into (A.5), (-2) times type-II log-likelihood
can be obtained as

M(σ, λ) = Ne log 2πσ2 + log |Cεεε| + 1

σ2

Ne∑
i=1

λ2

s2
i + λ2

ṽ2
i +

Ne∑
i=1

log
s2

i + λ2

λ2
. (A.8)

where ṽi is ith component of the vector ṽ̃ṽv. Here we have replaced the parameter
τ by λ = σ/τ . The hyper-parameter σ, λ can be estimated as so that the
function M is minimized. Differentiating M by σ2, the estimate of σ2 is
provided by

σ̂2 =
1

Ne

Ne∑
i=1

λ2

s2
i + λ2

ṽ2
i (A.9)

The cost function for estimating the regularization parameter λ is given by

M′(λ) = Ne log 2π + Ne log σ̂2 + log |Cεεε| + Ne +

Ne∑
i=1

log
s2

i + λ2

λ2
. (A.10)

When WMN method of a fixed regularized parameter is fitted to time series
observations vvv1, · · · , vvvT , the likelihood can be considered to be i.i.d. Therefore
the estimates σ̂ and the cost function M′

T can be obtained as follows,

σ̂2 =
1

TNe

T∑
t=1

Ne∑
i=1

λ2

s2
i + λ2

ṽ2
i,t (A.11)

M′
T (λ) = TNe(log 2πσ̂2 + 1) + T log |Cεεε| + T

Ne∑
i=1

log
s2

i + λ2

λ2
. (A.12)

This ABIC value can be directly used in order to compare instantaneous inverse
solutions (WMN solutions) with AIC of dynamic inverse solutions.





Appendix B

Some lemmas on multivariate
normal distributions

Two lemmas about the conditional variance and expectation for multivariate
normal distribution are introduced and proved here. For detailed issue, see
standard textbooks of multivariate analysis such as Mardia et al. 1979; Ander-
son 2003.

Let x, y, z denote (vector) Gaussian random variables. Furthermore the
expectation and covariance matrices of these vectors are denoted by µx, Σxy

and so on.

Lemma 1

E[x|y] = µx + ΣxyΣ
−1
yy (y − µy) (B.1)

Var[x|y] = Σxx − ΣxyΣ
−1
yy Σyx (B.2)

Lemma 2

E[x|y, z] = E[x|y] + ΣxzΣ
−1
zz z (B.3)

Var[x|y, z] = Var[x|y] − ΣxzΣ
−1
zz Σ′

xz (B.4)

If Σyz = 0 (i.e. y ⊥ z) and µz = 0.

Lemma 1 means that when x, y are the Gaussian random variables with
mean 0, the conditional expectation is given by

E[x|y] = ΣxyΣ
−1
yy y = E[xy]E[yy]−1y.

In the other words, the conditional expectation corresponds to "the projection"
of x onto y (in the sense of L2 norm). In the original literature of Kalman
filtering (Kalman 1960), Lemma 1 and Lemma 2 have been applied to the
derivation, where in particular Lemma 2 was referred to as "the orthogonal
projection".
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Proof of Lemma 1 The joint distribution of x and y is given by

p(x, y) = (2π)−
d
2 |Σ|− 1

2 exp
{
− 1

2
(x − µx y − µy)

[
Σxx Σxy

Σyx Σyy

]−1(
x − µx

y − µy

)}

Now applying the linear transformation

(
X

Y

)
=

[
I −ΣxyΣ

−1
yy

0 I

]
≡ T

(
x − µx

y − µy

)

to the variables x, y gives

p(X, Y ) = C exp
{
− 1

2
(X Y )(T−1)′

[
Σxx Σxy

Σyx Σyy

]−1

T−1

(
X

Y

)}

where C is a constant term. Note that the Jacobian of T is 1. By directly
calculating inside of the exponential, we obtain:

p(X, Y ) = C exp
{
− 1

2
(X Y )

[
Σxx − ΣxyΣ

−1
yy Σyx 0

0 Σyy

]−1(
X

Y

)}
.

Rewriting this probability density using the original variables x, y leads to

p(x, y) = C exp[
− 1

2

{(
x − µx + ΣxyΣ

−1
yy (y − µy)

)′
Σ−1

x|y
(
x − µx + ΣxyΣ

−1
yy (y − µy)

)
+(y − µy)

′Σ−1
yy (y − µy)

}]
(B.5)

where Σx|y = Σxx −ΣxyΣ
−1
yy Σyx. Integrating both-hand sides of Eq.(B.5) by x,

the marginal distribution of y is obtained as

p(y) = C1 exp
{
− 1

2
(y − µy)

′Σ−1
yy (y − µy)

}
(B.6)

Since the conditional distribution of x on y is obtained as

p(x|y) =
p(x, y)

p(y)
,

the conditional expectation and variance are given by

E[x|y] = µx + ΣxyΣ
−1
yy (y − µy)

Var[x|y] = Σxx − ΣxyΣ
−1
yy Σyx.
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Proof of Lemma 2 Applying (B.1) to the vector
[
y
z

]
in place of y gives

E[x|y, z] = µx + [Σxy Σxz]

[
Σ−1

yy 0

0 Σ−1
zz

](
y − µy

z

)
= µx + ΣxyΣ

−1
yy (y − µy) + ΣxzΣ

−1
zz z

= E[x|y] + ΣxzΣ
−1
zz z

In the same way, Applying (B.2) to the vector
[
y
z

]
in place of y gives

Var[x|y, z] = Σxx − [Σxy Σxz]

[
Σ−1

yy 0

0 Σ−1
zz

][
Σyx

Σzx

]
= Σxx − ΣxyΣ

−1
yy Σyx − ΣxzΣ

−1
zz Σzx

= Var(x|y) − ΣxzΣ
−1
zz Σzx

As can be seen, Σyz = 0, that is, the orthogonality between x and y, is essential
for the proof.
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