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Repetitive spatiotemporal patterns in spontaneous brain activities have been widely examined in non-human
studies. These studies have reported that such patterns reflect past experiences embedded in neural circuits. In
human magnetoencephalography (MEG) and electroencephalography (EEG) studies, however, spatiotemporal
patterns in resting-state brain activities have not been extensively examined. This is because estimating spatio-
temporal patterns from resting-state MEG/EEG data is difficult due to their unknown onsets. Here, we propose a
method to estimate repetitive spatiotemporal patterns from resting-state brain activity data, includingMEG/EEG.
Without the information of onsets, the proposed method can estimate several spatiotemporal patterns, even if
they are overlapping. We verified the performance of the method by detailed simulation tests. Furthermore,
we examined whether the proposed method could estimate the visual evoked magnetic fields (VEFs) without
using stimulus onset information. The proposedmethod successfully detected the stimulus onsets and estimated
the VEFs, implying the applicability of this method to real MEG data. The proposed method was applied to
resting-state functional magnetic resonance imaging (fMRI) data andMEGdata. The results revealed informative
spatiotemporal patterns representing consecutive brain activities that dynamically change with time. Using this
method, it is possible to reveal discrete events spontaneously occurring in our brains, such as memory retrieval.

© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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Introduction

Over the past decade, resting-state (or spontaneous) brain activities
have attractedmuch interest, prompting a growing body of neuroscience
studies.

In non-human studies, repetitive spatiotemporal patterns emerging
in spontaneous brain activities have beenwidely examined (e.g. Ikegaya
et al., 2004). Here, we define spatiotemporal patterns as activities
represented by two-dimensional matrices of channel × time (Fig. 1A).
These studies have reported that the repetitive spatiotemporal patterns
resemble the preceding brain activities during tasks, suggesting that
these patterns reflect past experiences embedded in neural circuits
(Foster and Wilson, 2006; Han et al., 2008; Ji and Wilson, 2007;
Wilson and McNaughton, 1994). Furthermore, it has been reported
that the spatiotemporal patterns are predictive of future brain activities
during tasks, suggesting that they contribute to the encoding of future
novel experiences (Dragoi and Tonegawa, 2011, 2013). Theoretical
studies implied that encoding information by spatiotemporal patterns
has advantages in terms of the computational efficiency of pattern
recognition and memory capacity (Hopfield, 1995; Izhikevich, 2006).
. This is an open access article under
All of the above studies highlight the significance of examining spatio-
temporal patterns in spontaneous brain activities.

In human studies, functional connectivities of resting-state function-
al magnetic resonance imaging (fMRI) have been widely examined
(Beckmann et al., 2005; Biswal et al., 1995, 2010; Fox et al., 2005; Fox
and Raichle, 2007; Raichle et al., 2001; Smith et al., 2009). Functional
connectivity is the correlation of fMRI time series across regions, and it
is examined using either seed-based correlation (Biswal et al., 2010)
or independent component analysis (ICA) (Beckmann et al., 2005).
Starting with motor cortices (Biswal et al., 1995), several sets of corre-
lated brain regions were identified, such as the default mode network
(DMN) (Fox et al., 2005; Raichle et al., 2001). Recently, Majeed et al.
(2011) developed a template-matching algorithm to estimate
spatiotemporal patterns from resting-state fMRI data, and they revealed
spatiotemporal patterns consisting of an alteration between activation
of areas comprising the DMN and the task-positive network.

In humanmagnetoencephalography (MEG) and electroencephalog-
raphy (EEG) studies, however, spatiotemporal patterns in resting-state
brain activities have not been thoroughly examined. Many of the
resting-state MEG/EEG studies also focused on functional connectivity,
which here is the correlation of an oscillation's amplitudes across
regions. The functional connectivities of MEG/EEG were reported to re-
late to those of fMRI (Baker et al., 2014; Brookes et al., 2011; de Pasquale
et al., 2010, 2012; Mantini et al., 2007). Using clusteringmethods, some
the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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studies examined spatial patterns in resting-state EEG data, the so-
calledmicrostates (Britz et al., 2010; Van de Ville et al., 2010). However,
they did not examine the spatiotemporal patterns.

This paucity of research efforts devoted to examining the spatiotem-
poral patterns in resting-state MEG/EEG data could be attributed to the
difficulty of estimating them. In the case of task-related data, spatiotem-
poral patterns are conventionally estimated using externally observable
onsets, such as stimulus and response onsets. For example, the
spatiotemporal MEG patterns time-locked at visual stimuli, that is, the
so-called visual evoked magnetic fields (VEFs), are obtained by averag-
ing MEG data triggered at the visual stimulus onsets. In the case of
resting-state data, however, externally observable onsets do not exist,
so the averaging procedure cannot be used. Considering that task-
related MEG/EEG data exhibit spatiotemporal patterns time-locked to
overt events, it is reasonable to assume that resting-state MEG/EEG
data also exhibit spatiotemporal patterns time-locked to covert events,
such as memory retrieval (Deuker et al., 2013; Staresina et al., 2013;
Tambini et al., 2010).

In the above method of Majeed et al. (2011), a segment starting at a
random time point is regarded as a template. Then, segments
resembling the template are searched for over time, and the template
is updated by averaging the found segments. This method works well
when the spatiotemporal patterns do not overlap. If they do overlap,
however, the method estimates the spatiotemporal patterns that are
contaminated by each other. In the cases of MEG/EEG data, signals
from different brain regions are spatially mixed, and thus spatiotempo-
ral patterns probably do overlap. Therefore, their method is not suitable
for MEG/EEG data. Because MEG/EEG can capture brain activities on a
real electrical time scale, estimating spatiotemporal patterns from
these data is also important.

In this study, we propose amethod to estimate repetitive spatiotem-
poral patterns from resting-state brain activity data, including MEG/
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Fig. 1. Assumption of proposed method (STeP). (A): Resting-state data is assumed to contain s
defined as activities represented by two-dimensional matrices of channel × time. (B): Schema
EEG. Without the information of onsets, the proposed method can
estimate several spatiotemporal patterns even if they are overlapping.
Using simulated data, we tested the performance of the method in var-
ious situations. Furthermore, we tested the performance of this method
using real MEG data during a visual stimulation task. We examined
whether the proposed method could estimate the VEFs without using
stimulus onset information. Finally, the method was applied to
resting-state fMRI and MEG data. All of the above analyses confirmed
the applicability and usefulness of the proposed method for real brain
activity data.

Proposed method to estimate spatiotemporal patterns

Assumption and purpose

Resting-state data are assumed to contain several unknown spatio-
temporal patterns at unknown onsets (Fig. 1A), which is expressed as

y chð Þ tð Þ ¼
XK
k¼1

XIk
i

p chð Þ
k t−τk;i þ 1

� �þ v chð Þ tð Þ; ð1Þ

where y(ch)(t) is resting-state data at channel ch, K is the number of
spatiotemporal patterns, Ik is the number of onsets for the k-th spatio-
temporal pattern, pk(ch)(t) is the k-th spatiotemporal pattern, τk , i is the
i-th onset of the k-th spatiotemporal pattern, and v(ch)(t) is noise at
channel ch. By introducing onset time series

uk tð Þ ¼ 1 t ∈ τk;1;⋯; τk;Ik
� �

0 Otherwise;

�
ð2Þ
Time

+

v    (t)
(ch)

y    (t)
(ch)

Noise

Resting-state data

everal unknown spatiotemporal patterns at unknown onsets. Spatiotemporal patterns are
tic representation of Eq. (3). Note that uk(t) takes a binary (0 or 1) value.
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Eq. (1) can be rewritten in a convolution form as

y chð Þ tð Þ ¼
XK
k¼1

XN
n¼1

p chð Þ
k nð Þuk t−nþ 1ð Þ þ v chð Þ tð Þ; ð3Þ

whereN is the length of spatiotemporal patterns (Fig. 1B). Eq. (3) can
be regarded as the finite impulse response (FIR) model, where p=
{pk(ch)(t)|k=1:K,ch=1:CH, t=1:N} and u={uk(t)|k=1:K, t=1:T}
correspond to the impulse response and the input, respectively. In the
following, the notation x=1:X is used to represent x=1,⋯ ,X. Note
that u takes a binary (0 or 1) value and is unknown in this study. Fur-
thermore, the waveforms of p can be different across channels and are
also unknown.

The purpose of the proposedmethod is to estimate p and u from y=
{y(ch)(t)|ch=1:CH, t=1:T}, given K and N. Hereafter, this method is
called STeP (SpatioTemporal Pattern estimation).

Objective function

STeP attempts to estimate p and u so that the power of the residual
error between observed and reconstructed data by the estimated p and
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u becomes small. Therefore, the objective function is defined as

R p;uð Þ ¼
XCH
ch¼1

XT
t¼1

y chð Þ tð Þ−
XK
k¼1

XN
n¼1

p chð Þ
k nð Þuk t−nþ 1ð Þ

" #2

: ð4Þ

STeP searches for the optimal p and u that minimize R(p,u).

Optimization algorithm

If u is given, p can be estimated by the least squares method. On the
other hand, if p is given, we can search for u. Therefore, from an initial u,
we can obtain an estimate of u by alternately iterating the updates of p
and u. However, the converged umay be a local minimum of the objec-
tive function [Eq. (4)]. To avoid local minima, we need to repeat this
procedure from various initial values of u. Furthermore, to generate
the initial u, we need to set the number of onsets, but this is unknown.
To deal with these issues, we developed an optimization algorithm
consisting of three hierarchical levels: top, middle, and bottom
(Fig. 2A). The top level is for estimating the necessary number of onsets.
The middle level is for avoiding local minima by generating various
initial values of u. The bottom level is for actually estimating u. These
three levels are described below.
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Top level
This level is for estimating the necessary number of onsets. We first

set the number of onsets for each spatiotemporal pattern toM. Because
some of the M onsets generated at the middle level can be removed at
the bottom level (see middle and bottom levels), M defines the upper
limit of the number of onsets for each spatiotemporal pattern. We set
common M across k. Then, we estimate u (see middle and bottom
levels). Once u is obtained, p can be estimated by the least squares
method as follows. Eq. (3) is rewritten in a matrix form as

Y ¼ UP þ V ;

where

Y ¼
y 1ð Þ Tð Þ ⋯ y CHð Þ Tð Þ

y 1ð Þ T−1ð Þ ⋯ y CHð Þ T−1ð Þ
⋮ ⋯ ⋮

y 1ð Þ Nð Þ ⋯ y CHð Þ Nð Þ

2
664

3
775;

U ¼
u1 Tð Þ ⋯ u1 T−N þ 1ð Þ ⋯ uK Tð Þ ⋯ uK T−N þ 1ð Þ

u1 T−1ð Þ ⋯ u1 T−Nð Þ ⋯ uK T−1ð Þ ⋯ uK T−Nð Þ
⋮ ⋯ ⋮ ⋯ ⋮ ⋯ ⋮

u1 Nð Þ ⋯ u1 1ð Þ ⋯ uK Nð Þ ⋯ uK 1ð Þ

2
664

3
775;

P ¼

p 1ð Þ
1 1ð Þ ⋯ p CHð Þ

1 1ð Þ
⋮ ⋯ ⋮

p 1ð Þ
1 Nð Þ ⋯ p CHð Þ

1 Nð Þ
⋮ ⋯ ⋮

p 1ð Þ
K 1ð Þ ⋯ p CHð Þ

K 1ð Þ
⋮ ⋯ ⋮

p 1ð Þ
K Nð Þ ⋯ p CHð Þ

K Nð Þ

2
666666664

3
777777775
;

V ¼
v 1ð Þ Tð Þ ⋯ v CHð Þ Tð Þ

v 1ð Þ T−1ð Þ ⋯ v CHð Þ T−1ð Þ
⋮ ⋯ ⋮

v 1ð Þ Nð Þ ⋯ v CHð Þ Nð Þ

2
664

3
775:

The least squares solution of P is

P̂ ¼ UTU
h i�1

UTY : ð5Þ

Finally, we calculate R(p,u).
As M increases, R(p,u) becomes smaller until M reaches a sufficient

value (Fig. 2B). Therefore, we gradually increase M until R(p,u) stops
decreasing. In this study, we increasedM from 2 by 2 and then stopped
increasing it if R(p,u) did not exceed itsminimumvalue in three consec-
utive loops, or when M reached T/N.

Middle level
At this level, givenM, we try to find the global minimum solution of

u. Because R(p,u) has local minima, the initial u does not need to
converge to the global minimum. To find the global minimum, we re-
peat the estimation of u (see bottom level) for E times from different
initial u values and select the best u that minimizes R(p,u), where p is
obtained using u by Eq. (5). E was set to 30 in this study. The selected
u is preserved for use in generating the initial u next time (i.e. when
M=M+2).

When M=2, the initial u is generated by using only random
numbers. Otherwise, it is generated using the preserved u and random
numbers. Suppose that the current and last M arem andm−2, respec-
tively. We generated the m initial onsets for each spatiotemporal pat-
tern by adding onsets generated by random numbers to the onsets
estimated when M=m−2. For example, if 5 onsets are estimated for
a spatiotemporal pattern when M=6, now (M=8) we generate 8 on-
sets by adding 3 onsets to the 5 onsets. Such randomness is introduced
only at this level for adding the onsets.

Bottom level
At this level, we actually estimate u from the initialu. Namely, onsetsτ={τk ,i |k=1:K, i=1: Ik} are estimated by sequentially updating each

onset one by one. Once τ is estimated, u can be determined according
to Eq. (2). Let τ~k;~i denote the target onset to be updated. We iterate

p-step Update spatiotemporal patterns using onsets except for the
target onset τ~k;~i
u-stepUpdate the target onsetτ~k;~i so that the residual error becomes
smaller

while changing the target onset with the following order: ~k ¼ 1 : K;
~i ¼ 1 : IK . The two steps are described below.

At p-step, onset time series not containing the target onset τ~k;~i are
generated by

u0
k tð Þ ¼ 0 t ¼ τ~k;~i

uk tð Þ Otherwise:

�

Using u0 ¼ fu0
kðtÞjk ¼ 1 : K; t ¼ 1 : Tg, p ′={p′k(ch)(t)|k=1:K,ch=

1:CH,t=1:N} is obtained by Eq. (5).
At u-step, a residual error is calculated by

r chð Þ tð Þ ¼ y chð Þ tð Þ �∑
K

k¼1
∑
N

n¼1
p0k

chð Þ nð Þu0
k t � nþ 1ð Þ:

Because u′ does not assume the target onset τ~k;~i, the
~k-th spatiotem-

poral pattern p0~k
ðchÞðtÞ is expected to remain in r(ch)(t) around τ~k;~i .

Therefore, a candidate time point for the target onset is obtained by

tnew ¼ argmin
t0 ∈ t ∑

CH

ch¼1
∑
T

t¼1
r chð Þ tð Þ � p0 chð Þ

~k
t � t0 þ 1ð Þ

h i2
;

where t is the set of time points between the previous andnext onsets of
the target onset ½τ~k;~i−1 þ 1;⋯; τ~k;~iþ1−1�. The target onset is updated to

tnew only if

∑
CH

ch¼1
∑
T

t¼1
r chð Þ tð Þ � p0~k

chð Þ t � tnew þ 1ð Þ
h i2

b ∑
CH

ch¼1
∑
T

t¼1
r chð Þ tð Þ2:

Otherwise, the target onset is removed by assuming the onset is not
necessary within t. Therefore, the number of estimated onsets can be
smaller than M and different across k.

The decision of convergence is conducted once in updating all of the
onsets. We estimate p using all onsets by Eq. (5) and then calculate
R(p,u).We exit the loop if R(p,u) is not smaller than that at the previous
decision.

Different spatiotemporal patterns are automatically assigned to dif-
ferent k in estimating u at themiddle and bottom levels. This is because
assigning different spatiotemporal patterns to different k minimizes
R(p,u)more than the other approaches, such as assigning the same spa-
tiotemporal pattern to different k.

Fig. 2C illustrates the information flow across the top, middle, and
bottom levels. At the top level, we set M and pass it to the middle
level. At the middle level, given M, we generate the initial u and pass
it to the bottom level. At the bottom level, from the initialu, we estimate
u and return it to the middle level. These steps are repeated for E times
with different initial u, and as a result E-estimated u are obtained. At the
middle level, from the E-estimated u, we select the best u and return it
to the top level. Furthermore, we preserve it for generating the initial u
when M=M+2.
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Materials and methods

Simulation test

The performances of STePwere examined using simulatedMEG/EEG
data.

Simulated data were generated as follows. Spatiotemporal patterns
were generated while setting the number of channels to 10 (Fig. 3A,
left). The lengths of the spatiotemporal patterns and simulated data
were respectively set to 20 and 6000, corresponding to 0.4 and 120 s
when the sampling rate in an offline analysis is 50 Hz. We generated
150 onsets for each spatiotemporal pattern using random numbers.
From the onsets, the onset time series were generated according to
Eq. (2) (Fig. 3A, right). By summing the convolutions of the spatiotem-
poral patterns and their onset time series, we obtained a signal time se-
ries (Fig. 3B). Simulated data were generated by adding Gaussian white
2
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noise to the signal time series (Fig. 3C). The standard deviation (SD) of
the noise was either 0.22, 0.40, or 0.71 corresponding to the SNRs of 0,
−5, and −10, respectively. The SNR is defined as

10 log10
T∑CH

ch¼1 ∑N
t¼1 p chð Þ

k tð Þ2

N∑CH
ch¼1 ∑T

t¼1 v chð Þ tð Þ2
;

where∑ch=1
CH ∑t=1

N pk
(ch)(t)2 is the same across k. By applying STeP to

the simulated data, we estimated the spatiotemporal patterns and their
onsets.

Before quantifying the estimation accuracy, it was necessary to
change the assignment of estimated spatiotemporal patterns to k.
This is because different spatiotemporal patterns are arbitrarily
assigned to different k in the estimation. Furthermore, it was also
necessary to adjust the average of the estimated onsets for each spa-
tiotemporal pattern. This is because the shape of a spatiotemporal
pattern shifts forward or backward depending on the definition of
its onsets, and these are also arbitrarily determined in the
200
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estimation. We changed the assignment of the estimated spatiotem-
poral patterns and adjusted the average of the estimated onsets so
that the difference between the true and estimated spatiotemporal
patterns was minimized. This procedure was also conducted when
comparing spatiotemporal patterns estimated from different data
or with different parameters.

Correlation coefficient of spatiotemporal patterns
To quantify the estimation accuracy of the spatiotemporal patterns,

we calculated the correlation coefficients between the true and
estimated spatiotemporal patterns and then averaged them across the
spatiotemporal patterns.

Normalized distance from true onsets
To quantify the estimation accuracy of the onsets, we calculated two

metrics: normalized distance from the true onsets and normalized
number of estimated onsets. The normalized distance from the true
onsets represents how close the estimated onsets are to the true ones
compared to themean inter-onset interval (IOI) of the estimated onsets,
and it was calculated by

1
K
∑
K

k¼1

1
ak � Ik

∑
Ik

i¼1
min

j
jτk;i � τ̂k; jj;

where Ik is the number of true onsets for the k-th spatiotemporal
pattern, τk , i is the i-th true onset of the k-th spatiotemporal pattern,
and τ̂k; j is the j-th estimated onset of the k-th spatiotemporal pattern.
ak is a normalization value representing themean IOI and is calculated by

ak ¼
1

Îk � 1
∑
Îk

i¼2
τ̂k;i � τ̂k;i�1
� �

;

where Îk is the number of estimated onsets for the k-th spatiotemporal
pattern. The normalized distance from the true onsets becomes close to
0 if the estimated onsets are close to the true ones.

Normalized number of estimated onsets
The normalized number of estimated onsets represents how many

onsets are estimated compared to the number of true onsets, and it
was calculated by

1
K
∑
K

k¼1

Îk
Ik
:

This value becomes larger than 1 if there are false positive onsets.

MEG

To show the applicability of STeP for real MEG data, we conducted a
MEG experiment.

Eleven healthy subjects (ages 26.8 ± 7.5 years [mean± SD]) partic-
ipated in this experiment. All subjects gave written informed consent
for the experimental procedures, which were approved by the ATR
+ +

0.1 s 3–4 s

+

Rest 1
(5 min)

Stimulation
(5 min)

Beep

Fig. 4. Experimental design of MEG experiment. A MEG recording session consists of three cons
instructed to fixate on a white cross.
Human Subject Review Committee. All of them had normal or
corrected-to-normal visual acuity.

The experimental design is shown in Fig. 4. AMEG recording session
consisted of three 5-min consecutive periods: Rest 1, Stimulation, and
Rest 2. Throughout the session, the subjects were instructed to fixate
on a white cross. During Stimulation, a visual stimulus was presented
100 times with a duration of 0.1 s on the left-hand side of the white
cross. The inter-stimulus intervals were 3–4 s.

The MEG were recorded with a whole-head 400-channel system
(210-channel Axial Gradiometer and 190-channel Planar Gradiometer;
PQ1400RM; Yokogawa Electric Co., Japan). The sampling frequencywas
1 kHz. An electrooculogram (EOG) value was simultaneously recorded.

In offline analyses, theMEGdatawere passed through a low-pass FIR
filter with a cutoff frequency of 8 Hz, sampled at 50 Hz, and passed
through a high-pass FIR filter with a cutoff frequency of 1 Hz. Using ref-
erence sensor data, environmental noise was removed by time-shift
Principal Component Analysis (PCA) (de Cheveigné and Simon, 2007).
EOG artifacts were removed by generating a multiple linear regression
model to predict eye-movement-related components in the MEG data
using the EOG data, and then the prediction was removed from the
MEG data. Cardiac artifacts and sensor noise were removed by ICA
(Jung et al., 2001).

To examine whether STeP could estimate the VEF without using
stimulus onset information, we applied STeP to the continuous MEG
data during Stimulation. We used 10 axial channels where the VEF
was large, and we set the length of spatiotemporal patterns to 0.5 s
based on the waveform of the VEF. For each subject, we determined
the number of spatiotemporal patterns based on reproducibility of esti-
mation results. After estimating spatiotemporal patterns, we selected
the spatiotemporal pattern corresponding to the VEF and adjusted the
average of its estimated onsets so that the difference between the VEF
and the selected spatiotemporal pattern became smallest. To quantify
the similarity between the VEF and the selected spatiotemporal pattern,
we calculated the correlation coefficient between them. To test the sta-
tistical significance of the correlation coefficient, we generated 1000
surrogate values for the correlation coefficient using IOI randomized on-
sets and calculated p=Ns/1000, where Ns is the number of surrogate
values larger than the actual correlation coefficient. To quantify how
many stimulus onsets were detected, we calculated the detection rate
by Nd/100, where Nd is the number of trials in which the onsets were
estimated between the stimulus onsets ± 0.02 s. The statistical signifi-
cance of the detection ratewas tested in the sameway as the correlation
coefficient. Furthermore, to quantify the extent to which the VEF is
dominant in the MEG data, we calculated the contribution ratio of the
VEF by

1�∑10
ch¼1 ∑T

t¼1 y chð Þ
� tð Þ2

∑10
ch¼1 ∑T

t¼1 y chð Þ tð Þ2
;

where y -
(ch)(t) was obtained by subtracting the VEF from theMEG data.

To estimate repetitive spatiotemporal patterns in resting-state MEG
data, we applied STeP to the MEG data during Rest 1. The MEG data
+

0.1 s

+

Rest 2
(5 min)

Beep

Time

ecutive periods: Rest 1, Stimulation, and Rest 2. Throughout the experiment, subjects were



257Y. Takeda et al. / NeuroImage 133 (2016) 251–265
were preprocessed as described above except that the cutoff frequency
of the low-pass filter was 25 Hz. We used 210 axial channels.

fMRI

To show the applicability of STeP for fMRI data, we conducted a
resting-state fMRI experiment.

Ten healthy subjects (ages 29.2±7.6 years) participated in
this experiment. All gave written informed consent for the experi-
mental procedures, which were approved by the ATR Human
Subject Review Committee, and all had normal or corrected-to-
normal visual acuity.

The experiment was done in a 10-min resting-state condition. The
subjects were instructed to fixate on a white dot, to let their mind
wander, and to not focus on any one thing.

Three Tesla MR scanner (MAGNETOM Trio 3 T; Siemens, Germany)
was used to obtain the structural and functionalMRI data. The following
are the acquisition parameters for the T1-weighted images: repetition
time 2300 ms, time of echo 2.98 ms, flip angle 9°, slice thickness
1 mm, field of view 256 ×256 mm, and imaging matrix 256 ×256
with 240 slices. The following are the acquisition parameters for the
echo-planar images (EPIs): repetition time 2500 ms, time of echo
30 ms, flip angle 80°, slice thickness 4 mm, field of view
211.84 ×211.84 mm, and imaging matrix 64 ×64 with 40 slices.

In offline analyses, the fMRI data were preprocessed by SPM8
(Welcome Department of Cognitive Neurology, UK). Here, headmotion
and slice-timing were corrected. The images were spatially normalized
to match the MNI template and smoothed with an 8-mm full-width at
half-maximum (FWHM) Gaussian filter. The time series of each voxel
was high-pass filtered to 1/128 Hz. To remove motion artifacts, we
subtracted components correlated with head motion from the time
series of each voxel. After normalizing the time series of each voxel to
obtain a mean of 0 and an SD of 1, the preprocessed fMRI data of the
graymatter for all subjectswere concatenated together. To verify the ef-
fect of preprocessing, we applied both ICA and seed-based correlation
analysis to the concatenated data. This revealed spatial patterns
consistent with the DMN (Fox et al., 2005; Smith et al., 2009; Tong
et al., 2015) (Supplementary material), suggesting the effectiveness of
the preprocessing.
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We then applied STeP to the concatenated fMRI data. To shorten the
computation time, we used PCA to reduce the dimension of the fMRI
data from the number of voxels to that of the samples while keeping
its amplitude information. From this low-dimensional data, we estimat-
ed the onsets of spatiotemporal patterns. Then, using the estimated on-
sets, we estimated spatiotemporal patterns from the original fMRI data
by Eq. (5).
Results

Basic simulation test

The performance of STeP was tested using simulated data.
We generated five spatiotemporal patterns (Fig. 3A, left) and gener-

ated their onsets using random numbers (Fig. 3A, right). By summing
the convolutions of the spatiotemporal patterns and their onset time se-
ries, we obtained a signal time series (Fig. 3B). We can see that the spa-
tiotemporal patterns are overlapping (Fig. 3B). Simulated data were
generated by adding Gaussian white noise to the signal time series
(Fig. 3C). The SD of the noise was set to 0.40 so that the SNR would be-
come −5. The simulated data are too noisy to visually distinguish the
spatiotemporal patterns and their onsets (Fig. 3C). We estimated the
spatiotemporal patterns and their onsets by applying STeP to the simu-
lated data (Fig. 3C). In the estimation, we set the number and length of
the spatiotemporal patterns to the true values of 5 and 20, respectively.
The estimation required about 8 min on a Xeon processor (3.2 GHz × 8
cores).

Fig. 3D shows the estimated spatiotemporal patterns and onsets. The
estimated spatiotemporal patterns resemble the true ones (Fig. 3A and
D, left) (the correlation coefficient between the true and estimated spa-
tiotemporal patterns was 0.98). The estimated onsets are close to the
true onsets (Fig. 3A and D, right), with the normalized distance from
the true onsets at 0.02. The number of estimated onsets is almost the
same as that of true onsets (Fig. 3A and D, right), with the normalized
number of estimated onsets at 1.18. These results indicate that STeP suc-
cessfully estimated the spatiotemporal patterns and their onsets from
the noisy simulated data (Fig. 3C), even though the spatiotemporal pat-
terns were overlapping.
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Testing other methods

To clarify the differences between STeP and other approaches, three
existing methods were also applied to the same simulated data
(Fig. 3C). Their performanceswere also quantified by the correlation co-
efficients between the true spatiotemporal patterns (Fig. 5A) and the es-
timated ones, which were ordered and shifted along time to maximize
the correlation coefficients.

First, we tested Majeed et al.'s method (2011), which is basically a
template-matching algorithm. Fig. 5B shows examples of the estimated
templates. The estimated templates do not resemble the true spatio-
temporal patterns (Fig. 5A and B) (the correlation coefficient between
the true spatiotemporal patterns and the templates was 0.50). This
performance is attributable to the fact that, in the simulated data, the
spatiotemporal patterns are overlapping (Fig. 3B), and this method
cannot separate them. In the case of STeP, overlapping spatiotemporal
patterns can be separated (Fig. 3D, left).

Second, we tested ICA. To obtain spatiotemporal patterns by ICA, we
first generated time-shifted data. We increased the dimension of the
simulated data from CH to CH×N by treating the data at time t−n
(n=1,⋯ ,N−1) as additional channels. Then, we applied ICA to the
time-shifted data while regarding the time-shifted data at each time
point as a sample and setting the number of ICs to 5. We used runica.m
from EEGLAB, version 13.4.4b (Delorme and Makeig, 2004). The
resultingmixing vectors of the ICs were reorganized to form spatiotem-
poral patterns ([CH,N]). Fig. 5C shows the estimatedmixing vectors. The
estimated mixing vectors do not resemble the true spatiotemporal
patterns (Fig. 5A and C) (the correlation coefficient between the true
spatiotemporal patterns and the estimated mixing vectors was 0.53).
This is attributed to the fact that ICA is not designed for estimating re-
petitive spatiotemporal patterns.

Finally, we tested Olshausen's method (2003), which has a similar
generative model and purpose as STeP. Its main difference from STeP
is that u [Eq. (3)] is assumed to represent coefficients of basis functions
p and takes continuous values. We applied his method to the simulated
data (Fig. 3C) while setting the number of basis functions to 5. Fig. 5D
shows the estimated basis functions. The estimated basis functions do
not resemble the true spatiotemporal patterns (Fig. 5A and D) (the
correlation coefficient between the true spatiotemporal patterns and
the estimated basis functions was 0.54). This is attributable to the fact
that the estimated u took continuous values as described above (not
shown), although the true u took binary values (Fig. 3A, right). In the
case of STeP, u is assumed to represent the onset timing of spatiotempo-
ral patterns and should be a binary (0 or 1) value. This works as a strong
constraint and improves the estimation accuracy of STeP.

Detailed simulation tests

We examined the performance of STeP inmore detail. We repeated-
ly evaluated the estimation accuracies of spatiotemporal patterns and
their onsets at the SNRs of −10, −5, and 0. The simulated data were
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generated with the same parameters as the first simulation test
(Fig. 3) except for the SNRs. In the estimation, we set the number and
length of the spatiotemporal patterns to the true values of 5 and 20, re-
spectively. Simulation tests were conducted in 20 runs using different
onsets and noise.

Fig. 6 shows the estimation accuracies quantified by the three
metrics: the correlation coefficients of the spatiotemporal patterns
(A), the normalized distances from the true onsets (B), and the normal-
ized numbers of estimated onsets (C). When the SNR is 0, all three met-
rics show high estimation accuracies for all runs. This result indicates
that, when the SNR is sufficiently high, STeP robustly estimates the spa-
tiotemporal patterns and their onsets accurately.When the SNR is−10,
the normalized numbers of estimated onsets are much larger than 1.
This result indicates that, when the SNR is low, STeP estimates many
false positive onsets.

In actual application, the number of spatiotemporal patterns is un-
known, but we need to set it. Here, we examined the performance of
STeP when the assumed number of spatiotemporal patterns was
wrong. The simulated data were generated with the same parameters
as the first simulation test (Fig. 3). In the estimation, we set the number
of spatiotemporal patterns to either 3, 4, 5 (true), 6, or 7. The simulation
tests were conducted in 2 runs using different onsets and noise. Fig. 7A
shows the estimated spatiotemporal patterns in the first run.When the
assumed number of spatiotemporal patterns is smaller than true (b5),
some of the estimated spatiotemporal patterns seem to be contaminat-
ed with other spatiotemporal patterns. When the assumed number of
spatiotemporal patterns is larger than true (N5), some of the estimated
spatiotemporal patterns seem to have low SNR (Fig. 7A). To examine
the reproducibility of the estimated spatiotemporal patterns, we calcu-
lated the correlation coefficients of the estimated spatiotemporal pat-
terns between the first and second runs. Fig. 7B shows the correlation
coefficients. When the assumed number of spatiotemporal patterns is
larger than true (N5), some of the estimated spatiotemporal patterns
show low correlation coefficients (b0.6), indicating that they had low
reproducibility. This result suggests a way to determine the number of
spatiotemporal patterns: examine the reproducibility of estimated spa-
tiotemporal patterns by dividing data into two parts.

The length of spatiotemporal patterns is also unknown, but we need
to set it. We examined the performance of STeP when the assumed
length of spatiotemporal patterns was wrong. The simulated data
were generated with the same parameters as the first simulation test
(Fig. 3). In the estimation, we set the length of the spatiotemporal pat-
terns to either 10, 15, 20 (true), 25, 30, 35, or 40. The simulation tests
were conducted in 20 runs using different onsets and noise. Fig. 8A
shows the correlation coefficients between the true and estimated spa-
tiotemporal patterns. The correlation coefficients at the lengths of 15,
25, and 30 are not different from those at the length of 20 (true)
(pN0.05, two-tailed Wilcoxon signed-rank test, Bonferroni-corrected).
This result indicates that the estimation accuracy did not greatly de-
crease unless the assumed length of the spatiotemporal pattern was
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far from the true value. Therefore, we need not know the exact length of
the spatiotemporal patterns.

In the case of real brain activity data, it is possible that the ampli-
tudes of spatiotemporal patterns vary from onset to onset. To examine
the performance of STeP for such data, we applied STeP to simulated
data, including spatiotemporal patterns whose amplitudes are variable.
The simulated data were generated with the same parameters as the
first simulation test (Fig. 3), except that the spatiotemporal patterns
were multiplied by 1+w, wherew is a Gaussianwhite noise that is dif-
ferent across the onsets and spatiotemporal patterns. The SDs ofwwere
set to 0, 0.2, 0.4, 0.6, 0.8, and 1. In the estimation, we set the number and
length of the spatiotemporal patterns to the true values of 5 and 20, re-
spectively. The simulation tests were conducted in 20 runs for each SD
ofw using different onsets and noise. Fig. 8B shows the correlation coef-
ficients between the true and estimated spatiotemporal patterns as a
function of the SDs of w. The correlation coefficients at SD = 0.2, 0.4,
0.6, 0.8, and 1 are not different from those at SD = 0 (pN0.05, two-
tailed Wilcoxon signed-rank test, Bonferroni-corrected). This result in-
dicates that the variability of the amplitudes did not greatly decrease
the estimation accuracy. This is because, as the variability of the ampli-
tudes becomes large, huge spatiotemporal patterns sometimes appear
and STeP easily detects them while missing small ones. For the VEF
shown in Fig. 9C, the SD of w was estimated at 0.36. Considering these
10 20 30 40
snrettaplaropmetoitapsfohtgneldemussA

0.8

0.9

1

C
or

re
la

tio
n 

co
ef

fic
ie

nt

A

True

Effect of assuming wrong length of 
spatiotemporal patterns

Fig. 8. Performance of STeP when our assumption is not correct. (A): Performance of STeP w
patterns is 20. Correlation coefficients between true and estimated spatiotemporal patterns
variable. Correlation coefficients between true and estimated spatiotemporal patterns are sho
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results, the variability of the amplitudes of spatiotemporal patterns is
considered no problem for STeP.
Performance test with real MEG data

We examined the performance of STePwith realMEG data. It is gen-
erally believed that repeated presentation of a visual stimulus evokes a
stereotypical MEG pattern, the so-called VEF. STeP is proposed to esti-
mate such stereotypical spatiotemporal patterns without using their
onset information. Therefore, we tested whether STeP could estimate
the VEF without using the stimulus onset information.

We applied STeP to the continuous MEG data during Stimulation
(Fig. 4) at 10 axial channels where the VEFs are large. We set the length
of spatiotemporal patterns to 0.5 s based on the waveforms of the VEFs.
For each subject, we determined the number of spatiotemporal patterns
based on the reproducibility of the estimation results. Fig. 9 shows the
results of one subject. Fig. 9A shows the 10 selected channels. To deter-
mine the number of spatiotemporal patterns, we divided the MEG data
into two parts, each of which was 2.5-min data, and estimated spatio-
temporal patterns separately while setting the number of spatiotempo-
ral patterns to either 1, 2, 3, 4, or 5. Fig. 9B shows the correlation
coefficients between the spatiotemporal patterns separately estimated
from the two parts. When the assumed number of spatiotemporal pat-
terns is larger than 1, some of the estimated spatiotemporal patterns
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show low correlation coefficients (b0.7), that is, these patterns have low
reproducibility. Therefore, we set the number of spatiotemporal pat-
terns to 1 for this subject. Fig. 9C shows the VEF (top), which was ob-
tained by averaging the MEG data triggered at the stimulus onsets,
and the estimated spatiotemporal pattern (bottom) obtained by setting
the number of spatiotemporal patterns to 1. The estimated spatiotem-
poral pattern resembles the VEF (the correlation coefficient between
them is 0.90, pb0.01). Fig. 9D shows the raster plot (top) and histogram
(bottom) of the estimated onsets, whichwere generated by segmenting
the estimated onset time series triggered at the stimulus onsets. A large
number of onsets were estimated around time 0, corresponding to the
stimulus onsets. The detection rate of the stimulus onsets is 0.92
(pb0.01), indicating that STeP detected the stimulus onsets at a signifi-
cantly high rate. These results indicate that STeP successfully estimated
the VEF without using the stimulus onset information.

Actually, many onsets were estimated far from the stimulus onsets
(Fig. 9D). In fact, at the estimated onsets far from the stimulus onsets,
there seems to be a spatiotemporal pattern resembling the estimated
one (Fig. 9E, see MEG data under black bars). Han et al. (2008) showed
that visually evoked cortical activity reverberates in subsequent sponta-
neouswaves. The estimated onsets far from the stimulusmay reflect the
reverberation.

The estimation results of all subjects are summarized in Fig. 10.
These figures show scatter plots of the contribution ratios of the VEFs
and the two metrics, i.e. the correlation coefficients between the VEFs
and the estimated spatiotemporal pattern (A), as well as the detection
rates of the stimulus onsets (B). Each dot corresponds to each subject,
and its color represents the number of spatiotemporal patterns deter-
mined based on the reproducibility of the estimation results. The corre-
lation coefficients and the detection rates are higher than 0.8 for the
subjects whose contribution ratios of the VEFs are larger than 0.1. This
indicates that STeP successfully estimated the VEFs and their onsets, un-
less the VEFswere too small. It is assumed that, when the VEFs were too
small, STeP estimatedmore dominant spatiotemporal patterns than the
VEFs.

In summary, STeP can estimate the VEF without using any stimulus
onset information, indicating the applicability of STeP for realMEG data.
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Application to resting-state fMRI data

To demonstrate the usefulness of STeP, we applied it to the resting-
state fMRI data.

To determine the number of spatiotemporal patterns, we first exam-
ine the reproducibility of estimated spatiotemporal patterns. We divid-
ed the resting-state fMRI data into two parts, each of which contained
five subjects' data, and estimated spatiotemporal patterns separately
while setting the number of spatiotemporal patterns to either 1, 2, 3,
4, or 5. The length of spatiotemporal patterns was set to 10 s. Fig. 11A
shows the correlation coefficients between the spatiotemporal patterns
separately estimated from the two parts.When the assumed number of
spatiotemporal patterns is larger than 2, some of the estimated spatio-
temporal patterns show low correlation coefficients (b0.7), that is,
these patterns have low reproducibility. Therefore, we decided to set
the number of the spatiotemporal patterns to 2. Furthermore, we
assessed the sensitivity of the estimation results to the assumed length
of the spatiotemporal patterns. From the whole resting-state fMRI data,
which contains ten subjects' data, we estimated the spatiotemporal pat-
ternswhile setting the length of the spatiotemporal patterns to either 5,
7.5, 10, 12.5, or 15 s. The number of spatiotemporal patterns was set to
2. Fig. 11B shows the pairwise correlation coefficients between the esti-
mated spatiotemporal patterns of different lengths. When the length of
the spatiotemporal pattern is longer than 5 s, the correlation coefficients
are constantly high (N0.8). This indicates that the estimation results
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Fig. 12A shows the spatiotemporal patterns obtained by setting the
number and length of the spatiotemporal patterns to 2 and 10 s, respec-
tively. The two spatiotemporal patterns show positive and negative ac-
tivities, respectively. In both patterns, the spatial patterns at 10 s seem
to reflect large activities at veins, suggesting that these spatial patterns
reflect the cerebral venous drainage. Furthermore, in both patterns, re-
gions belonging to the same resting-state networks (RSNs) show large
activities at the same time points: 5 s for auditory, 7.5 s for visual and
cerebellum (Smith et al., 2009). This is reasonable because an RSN con-
sists of co-activating regions. Tong et al. (2012, 2015) showed that sys-
temic low-frequency oscillations (sLFOs) travel through the entire brain
and reach different voxels with different delays. The propagation pat-
tern in the estimated spatiotemporal patterns (Fig. 12A), from the audi-
tory cortex to veins via the visual and cerebellum cortices, seems to be
consistent with the delay map of sLFOs (Fig. 3A in Tong et al., 2015).

For comparison, we also applied Majeed et al.'s method (2011) to
the same resting-state fMRI data. The length of the template was set
to 10 s. Fig. 12B shows the template estimated by Majeed et al.'s
method (2011). The spatial pattern at 10 s in the template resembles
the spatial pattern at 5 s in the first spatiotemporal pattern (the correla-
tion coefficient between themwas 0.87) (Fig. 12A, left and B). The spa-
tial pattern at 2.5 s in the template resembles the spatial pattern at 7.5 s
in the second spatiotemporal pattern (the correlation coefficient
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between them was 0.83) (Fig. 12A, right and B). These similarities sug-
gest the validity of the estimated spatiotemporal patterns.

Application to resting-state MEG data

We also applied STeP to the resting-state MEG data. Here, we show
the estimation results of a subject.

To determine the number of spatiotemporal patterns, we first exam-
ine the reproducibility of estimated spatiotemporal patterns. We divid-
ed the resting-stateMEGdata into two parts, each ofwhichwas 2.5-min
data, and estimated spatiotemporal patterns separately while setting
the number of spatiotemporal patterns to either 1, 2, 3, 4, or 5. The
length of spatiotemporal patterns was set to 0.5 s. Fig. 13A shows the
correlation coefficients between the spatiotemporal patterns separately
estimated from the two parts. When the assumed number of
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length of the spatiotemporal pattern. From the whole resting-state
MEG data, we estimated the spatiotemporal patterns while setting the
length of the spatiotemporal patterns to either 0.2, 0.3, 0.4, 0.5, 0.6,
0.7, or 0.8 s. The number of spatiotemporal patterns was set to 1. Fig.
13B shows the pairwise correlation coefficients between the estimated
spatiotemporal patterns of the different lengths.When the length of the
spatiotemporal pattern is longer than 0.2 s, the correlation coefficients
are constantly high (N0.7). This indicates that the estimation results
were not so sensitive to the assumed length of the spatiotemporal pat-
tern if it was larger than 0.2 s.
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Fig. 14A shows the spatiotemporal pattern obtained by setting the
number and length of the spatiotemporal patterns to 1 and 0.5 s, respec-
tively. The spatiotemporal pattern contains spatial patterns similar to
the movement-related magnetic fields at 0.20, 0.24, 0.34 and 0.44 s.

For comparison, we also applied k-means clustering (MacQueen,
1967) to the same resting-state MEG data. Here, the resting-state MEG
data at each time point was regarded as a sample, and the number of
clusterswas set to 3. Fig. 14B shows the centers of the estimated clusters
(Clusters 1–3). Fig. 14C shows the correlation coefficients between the
spatiotemporal pattern at each time and the centers of the clusters. All
of the clusters have correlation coefficients close to 1 at different time
points (0.44 s for Cluster 1, 0.12 s for Cluster 2, and 0.48 s for Cluster 3),
indicating the consistency between the results of STeP and k-means clus-
tering. On the other hand, the correlation coefficients are not constant but
change with time. This indicates that the spatiotemporal pattern repre-
sents the consecutive brain activities that dynamically change with
time, while each cluster represents a snapshot of them.
Discussion

In this study, we proposed the STeP method to estimate repetitive
spatiotemporal patterns from resting-state brain activity data. The per-
formance tests with the simulated data show that STeP can estimate
spatiotemporal patterns accurately without using their onsets, even if
they are overlapping (Fig. 3). Furthermore, our results also show that
STeP works robustly in various situations (Figs. 6 and 8). The perfor-
mance tests with real MEG data show that STeP can estimate the VEFs
without using stimulus onset information (Figs. 9 and 10). Finally,
STeP was applied to the resting-state fMRI and MEG data. This revealed
informative spatiotemporal patterns, showing how the brain activities
dynamically change with time (Figs. 12 and 14). These results indicate
the applicability and usefulness of STeP for resting-state brain activity
data.
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Methodological considerations

STeP searches for spatiotemporal patterns and their onsets thatmin-
imize the objective function [Eq. (4)]. This is a difficult optimization
problem because there are many local minima. To solve this optimiza-
tion problem, we developed the algorithm shown in Fig. 2. In this algo-
rithm, each onset is updated sequentially (Fig. 2A, bottom level), so it is
time-consuming. However, it is also possible to update all of the onsets
together. For example, deconvolving spatiotemporal patterns out of
resting-state data provides the information of all onsets at once. Actual-
ly, in our simulation tests (not shown) this deconvolving algorithmwas
very fast. However, its estimation accuracy was low because it was al-
ways trapped in local minima. Other algorithms that update all of the
onsets together have shown similar results. Considering both the
computational cost and the optimization performance, the proposed
algorithm (Fig. 2) is empirically the best among all those we tested.

The performance testswith the simulated data show that, when SNR
is low, estimated onsets include many false positives (Fig. 6C); in other
words, overfitting occurs. A solution to this problem could be adding a
regularization term to the objective function [Eq. (4)]. Imposing a pen-
alty for increasing the number of onsets by a regularization term may
suppress the false positive onsets and increase the estimation accuracy.
Overfitting also occurs when the assumed number of spatiotemporal
patterns is larger than the actual value (Fig. 7A). In this study, we sug-
gest a solution to this problem: determine the number of spatiotempo-
ral patterns based on the reproducibility of estimated spatiotemporal
patterns (Fig. 7B). On the other hand, if our model [Eq. (3)] is
reformulated with a probabilistic model, we could avoid overfitting
using well-known criteria, such as Akaike's information criterion (AIC)
(Akaike, 1974), the Bayesian information criterion (BIC) (Schwarz,
1978), and the free energy.

Reliability of estimation results

STeP estimates repetitive spatiotemporal patterns and their onsets if
they exist. However, even if they do not exist, STeP is forced to extract
spatiotemporal patterns so that the residual error [Eq. (4)] becomes
small. Therefore, it is necessary to test the reliability of estimated spatio-
temporal patterns and onsets.

The reliability of estimated spatiotemporal patterns could be tested
by examining their reproducibility. As shown in this study (Figs. 7B,
9B, 11A, and 13A), reproducibility can be examined by estimating the
spatiotemporal patterns from two separate sets of data and assessing
the similarity between them. If reproducibility is high, the estimated
spatiotemporal patterns could be considered reliable. Furthermore,
the reproducibility of estimated spatiotemporal patterns could be a
criterion for determining the number of spatiotemporal patterns
(Figs. 7B, 9B, 11A, and 13A).

The reliability of estimated onsets could be tested by examining the
data at estimated onsets (see Fig. 9E). If the data at an estimated onset is
similar to the corresponding spatiotemporal pattern, the estimated
onset could be considered reliable. This similarity can be quantified by
the correlation coefficients.

Relation to other methods

For spike and fMRI data, template-matching algorithms have been
applied to estimate repetitive spatiotemporal patterns (Ikegaya et al.,
2004; Majeed et al., 2011). The template-matching algorithms use a
segment starting at a random time point as a template. Therefore, the
segment must contain a pure spatiotemporal pattern that is not over-
lappingwith others. Otherwise, the template-matching algorithms esti-
mate spatiotemporal patterns contaminated by each other (Fig. 5B).
Because spatiotemporal patterns are assumed to overlap in the case of
MEG/EEG data, the template-matching algorithms are not suitable for
these data.
ICA (Beckmann et al., 2005) and clustering methods, such as k-
means clustering (MacQueen, 1967), are very powerful tools to analyze
resting-state brain activity data. However, these methods do not pro-
vide spatiotemporal patterns, which are two-dimensional matrices of
channel × time (see Fig. 1A). Therefore, these methods do not meet
our needs.

If ICA or k-means clustering is applied to time-shifted data, which
are obtained by treating the data at time t−n (n=1,⋯ ,N−1) as
additional channels, the resulting mixing matrices of ICs or the centers
of clusters can be regarded as spatiotemporal patterns. However,
mixing matrices of ICs or centers of clusters do not necessarily reflect
actual spatiotemporal patterns (Fig. 5C). This is because neither ICA
nor k-means is designed to estimate repetitive spatiotemporal patterns.
Therefore, applying ICA or k-means clustering to time-shifted data is not
suitable for our purpose.

The methods of Olshausen (2003) and Anemüller et al. (2003) have
similar generative models and purposes as ours. STeP is different from
these methods mainly in the assumption of u [Eq. (3)]. In these
methods, u takes continuous values, assuming that u represents coeffi-
cients of bases. In STeP, on the contrary, u takes a binary (0 or 1) value,
assuming that u represents the onset timings of discrete events in the
brain. To extract discrete events in the brain, our assumption is consid-
ered better (Fig. 5D).

Recently, we proposed a general method to estimate MEG/EEG
waveforms that are common across trials (Common Waveform
Estimation, CWE) (Takeda et al., 2010, 2014). CWE can also estimate
spatiotemporal patterns even if their onsets are unknown. STeP is differ-
ent from CWE mainly in the assumed data structure. CWE is used for
trial data (channel × time × trial), while STeP is used for continuous
data (channel × time). Because resting-state data are continuous, CWE
cannot be used.

Using clustering methods and hidden Markov models, resting-state
MEG/EEG data have been segmented into stationary states (e.g. micro-
states) (Baker et al., 2014; Britz et al., 2010; Van de Ville et al., 2010;
Woolrich et al., 2013). The differences between STeP and these ap-
proaches are particularly evident when propagations occur. If brain ac-
tivities propagate across different regions (e.g. from V1 to MT), the
MEG/EEG spatial pattern consecutively changes with time. In this case,
STeP represents it with a spatiotemporal pattern, while these ap-
proaches represent it by a transition across states. Therefore, STeP is
considered suitable for capturing propagations of brain activities.

Spatiotemporal patterns in resting-state fMRI data

Using STeP, we estimated the two spatiotemporal patterns from the
resting-state fMRI data (Fig. 12A). The spatiotemporal patterns show
that the large activities propagate from the auditory cortex to veins
via the visual and cerebellum cortices (Fig. 12A). Recently, Tong et al.
(2012, 2015) showed that fMRI data are strongly contaminated with
sLFOs, which are observed at peripheral sites (e.g. fingertip). They also
showed that sLFOs reach different brain regions with different delays
(Tong et al., 2012, 2015) and the delays are partially responsible for
the emergence of RSNs (Tong et al., 2015). It is believed that the delays
reflect the cerebral blood flow formed by vascular anatomy. The propa-
gation pattern in the estimated spatiotemporal patterns (Fig. 12A)
seems to be consistent with the delay map of sLFOs (Fig. 3A in Tong
et al., 2015). Therefore, we suggest that the spatiotemporal patterns
represent how fMRI activities propagate along the cerebral blood flow,
while their origins, whether neuronal or non-neuronal, are not clear.

Applicability

Thinking of an issue, remembering the past, and imagining the fu-
ture: These activities occur spontaneously and are important brain func-
tions for human beings. However, their details are still veiled because
they occur silently in our brain without exhibiting overt signs. STeP
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can detect such events from various types of resting-state data, so it
could help us to unveil their mechanisms.

Moreover, applying STeP to continuous data during “tasks”may also
bring interesting results. Usually, continuous MEG/EEG data during
tasks are segmented into trials, and the data during inter-trial intervals
are discarded. However, it is possible that important brain activities also
occur during inter-trial intervals. If so, applying STeP could bring us im-
portant findings. Indeed, we applied STeP to the continuous MEG data
during the visual stimulation task and found that a spatiotemporal pat-
tern resembling the VEF appears not only after the stimulus onsets but
also during the inter-trial intervals (Fig. 9E).

A MATLAB implementation of the proposed method is available
from http://www.cns.atr.jp/takeda/STeP.html.
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Estimating repetitive spatiotemporal patterns  
from resting-state brain activity data 

 
Yusuke Takeda, Nobuo Hiroe, Okito Yamashita, Masa-aki Sato 

 
 
Independent component analysis (ICA) and seed-based correlation analysis 
were applied to the preprocessed resting-state fMRI data to which the 
proposed method (STeP) was applied. In applying ICA, the data at each voxel 
was regarded as a sample, and the number of ICs was set to 20.  
 As a result, spatial patterns consistent with the default mode network were 
extracted. This suggests that the fMRI data were preprocessed properly. 
  

 
 (A) Result of ICA. IC 5 is shown. Activities whose absolute values are over 
0.1 of maximum value across voxels are shown. (B) Result of seed-based 
correlation analysis. Correlation coefficients whose absolute values are over 
0.6 are shown. 
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