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Abstract— This paper first presents a novel control strategy
for periodic motion control based on a Hamiltonian system. Ac-
cording to the strategy, hybrid symmetric orbits (ideal walking
gaits) are explored using reversal symmetry of the Hamiltonian
system. Then, an invariance controller, a Symmetric Walking
Controller, is derived systematically to distribute the symmetric
orbits densely throughout the entire phase space. Finally, a
new robust walking speed controller is formulated based on
the passivity of the controlled system. Consequently, solutions
starting from any point globally converge to a stable limit cycle
having a desired energy level. The controller has strong passivity
and robustness, thereby rendering it capable of using external
disturbances as energy for walking propulsion. It requires no
model parameters and can be implemented in a very small
program size. Furthermore, it is applicable to any biped robot
without major modification. In this report, the effectiveness of
this controller is proved mathematically, validated numerically,
and confirmed experimentally.

Index Terms— Dynamic locomotion, Hybrid periodic orbit,
Invariance, Passivity, Controlled Hamiltonian, Symmetric orbit.

I. INTRODUCTION
A. Background

The mathematical substance of walking is nothing but a
nonlinear periodic orbit. Nevertheless, this is not the periodic
orbit of a single continuous dynamical system that has been
studied for long time in celestial mechanics. Rather, it is the
hybrid periodic orbit of a hybrid dynamical system compris-
ing continuous dynamics and discrete dynamics, which has
not been discussed well in dynamical system theory [1].

Because walking robots must always actively be prevented
from falling, a theoretical guarantee of stability is of utmost
importance for controller designers. Regarding this point, the
ZMP criterion has played a major role in controller synthesis.
ZMP can be considered as a special constraint that ensures
the tracking of some pre-planned reference walking path
in real-world coordinates (X-Y-Z). Therefore, in a typical
ZMP-based walking controller, some walking patterns are
partially designed in real-world coordinates; subsequently, the
remaining patterns are calculated off-line or in real-time so
that the ZMP criterion is met [2][3][4].

Because the location of ZMP restricts the walking gait,
design of ZMP as well as other pre-specified walking pat-
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Fig. 1. Experimental and simulation models of biped walking robots

terns have remained as salient obstacles. On the other hand,
momentum-based controllers that consider momenta instead
of ZMP have been proposed recently [5]. Although they
guarantee the regulation or tracking of a reduced inverted
pendulum model, their overall gait stability depends on the
walking pattern synthesis. An appropriate method to design a
globally stable and natural pattern remains unresolved, as in
the case of ZMP-based controller.

In that regard, passive bipedal walking robots have inspired
optimal and energy-efficient walking controllers [6]. Using
control inputs as the gravity effect, passive-like walking was
realized on level ground [7]. However, because the controlled
walking gait has the same property of the original uncon-
trolled passive walker on a slope, the region of attraction is
not large: improved stability remains elusive.

B. A novel control strategy based on Hamiltonian dynamics

We propose a controller that generates stable and robust
locomotion gaits autonomously without any pre-planned ref-
erence trajectories. To do so, we first propose a novel and
general control strategy for controlling oscillatory movement
based on Hamiltonian dynamics. The strategy comprises three
steps:

1. First disregard dissipativity of the system to extract
Hamiltonian (conservative) dynamics. Then, design an
invariance controller that restricts the hybrid solution
into invariant sets.
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2. Account for dissipativity and design some period and/or
energy controller to obtain asymptotic stable periodic
orbits (limit cycle) that pass through some desired target
states.

3. Design adaptive mechanisms to minimize control efforts.

The resultant controller has a hierarchical structure in which
the existence, stability, and boundedness of the solution are
ensured by the lowest layer with a high priority; more
advanced control goals are achieved at the higher layer.

Because of the lack of space in this paper, we cannot de-
scribe details of this general control strategy. Instead we will
show one specialized application of this strategy for walking
control, along with an outline of the paper organization.

In Step 1, dissipativity is disregarded; thereby, the system
becomes purely Hamiltonian. Symmetry of the Hamiltonian
system is utilized to find a symmetric (hybrid) periodic orbits
(ideal walking gaits). Section II reviews reversal symmetry
of Hamiltonian dynamical systems. This property reveals
the ideal walking gaits of the biped robot, as explained in
Section III. Moreover, the invariance controller is introduced
to enlarge the existence region of the periodic orbits. The
controller renders the system passive and the hybrid solution
invariant. Thus constructively derived controller based on
symmetry is called symmetric walking control (SWC) [8].

In Step 2, energy control is applied to the closed-loop
system obtained in Step 1 to achieve asymptotically sta-
ble periodic orbits. Specifically, Section IV-B proposes a
passivity-based robust speed-controller with an additional
control input. In particular, it is proved theoretically that,
in principle, under SWC, the robot does not fall. Section V
evaluates the controller by simulation or experiments using
the dynamic biped robot Skipper II and Skipper 11l (Fig. 1).
The controller is simple enough that it can be implemented
on some inexpensive microcontrollers.

In Step 3, we apply an adaptive controller to minimize
control inputs. It includes the problem of re-design of the
actuation method, in which some passive elements such as
springs may be introduced to the model. However, this is our
working problem and is not applied in this paper. Section
VI summarizes the effectiveness of SWC and discusses some
extensions including walk-to-run control.

Note that the above general control strategy was partially
applied by the authors to a 4-DOF monopedal and a 5-
DOF bipedal running robot in [9][10][11], in which an
energy-preserving controller actively removed the dissipation
at touchdown and revealed quasi-periodic orbits on torus
in Step 1, a delayed-feedback controller generated orbitally
stable running gaits in Step 2, and a spring stiffness adaptation
minimized control inputs to obtain completely passive running
(for the monoped case) in Step 3.

II. REVERSAL SYMMETRY IN HAMILTONIAN SYSTEM

As explained in Step 1 of the previous section, our strategy
is to extract and investigate Hamiltonian dynamics. Hamilto-
nian mechanical systems possess a special symmetry called

time-reversal symmetry [12]. Consider a diffeomorphism F'
on manifold M

F:M— M. (1

An involution R: M — M (Ro R =id) is called (involu-
tive) reversing symmetry of (1) if the following relationship
holds.

RoF=F'oR 2)

Let ¢; : (q(to),p(t0)) — (a(to +1),p(to + 1)) be an flow
map of Hamiltonian “mechanical" system with Hamiltonian

1
Ho(q,p) = §PTM(Q)_1P +Ulq). A3)

“Any" Hamiltonian mechanical system is reversible w.r.t.
involution R : (q,p) — (g, —p); that is,

Rogy=¢_4oR. )

The intersection of the fixed point sets F'iz:(R) and Fiz(Ro
¢¢) is of special interest because an orbit, called a (R-
) symmetric orbit, passes through the intersection and the
orbit is closely related to our “hybrid" periodic motion. In
summary, if there is a pair of the involution R and the R-
reversible flow ¢;, and if we can find the intersection of
Fixz(R) and Fiz(R o ¢), then we obtain a symmetric orbit.
This is an important part of our control strategy.

Time-reversal symmetry has been studied mainly in celes-
tial mechanics [12]. The idea was firstly implicitly applied to
a monoped hopping robot in [13], but recently, more concrete
treatment was done in [14]. In particular, the theory can prove
existence of the “controlled" quasi-periodic orbits of a 4-DOF
one-legged hopper discovered in [9][14]. But the purpose
here is different from these works; we derive an invariance
controller and a passivity-based controller in the following
two sections.

III. SYMMETRIC WALKING CONTROL

This section develops an invariance controller for biped
robots according to Step 1 of the strategy in Section I-B.

A. Symmetric (hybrid) periodic orbit of biped robot

Consider a compass-like biped model, as shown in Fig. 2.
Let ¢ = (¢1, g2) be generalized coordinates on configuration
space N := {q € 52 | |q1| < 7/2 and |q1| < |ga|}, where
the solution can be defined. Let z = (¢, p) be the canonical
coordinate on phase space M = T*N. The conjugate
momentum p is associated with ¢ by p = M(q)¢, where

M(q) =
(m1 + 2m2)L2 + mg(L — b)2
—mobL cos(q1 — g2)

—mabL cos(q1 — qz2)
m2b2

Define the control input as u; = 7 € R'. Then the dynamics
of the biped model at the single support phase can be
represented by the 4-DOF Hamiltonian control system [15]

M ={z' Ho} —{2", Hi}u1 (n=1,2,3,4), 6))
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Fig. 2. A compass-like biped robot comprising a point mass: g1 is the
absolute angle of the supporting leg, whereas g2 is that of the swinging leg.
T is the hip torque.

where
1
Ho(g,p) = §pTM(q)’1p+U(q), (©6)
Hi(qg) = q1—q (7)

are the internal Hamiltonian and interaction Hamiltonian,
respectively, and {-} is the Poisson bracket [16]. The potential
function is defined as

U(q) = (m1 + 2mg)gl cos q1 — magb(cosqi + cosgqz). (8)

Now, consider R-reversible “uncontrolled" flow ¢; of (5).
Instead of conventional involution (R := (¢,p) — (¢, —p)),
here we are interested in the mirror image about g-axis, that
is, the involution

R: (q1,92,p1,02) — (—q1, —q2,p1, p2)- )

Because U(q) is symmetric (invariant) to R, R is reversing
symmetry of ¢.

For hybrid dynamical systems such as legged robots, R-
reversibility of the flow is especially important when the
involution R itself can be considered as the discrete jump
of the hybrid system. In this case, the R-symmetric or-
bit corresponds to the hybrid periodic orbit of the system
(walking gait). The mirror image (9) is a natural involution
for the compass-like biped robot because it meets the ideal
touchdown condition (¢q; + g2 = 0). Therefore, the connection
of the involution R and the R-reversible flow ¢; constitutes
an “ideal" symmetric walking gait.

To render this connection make sence, one should consider
the restriction of flow ¢,

Fi=t|_, (10)

where 7' is defined as the time when the touchdown condition
q1+q2 = 0 holds. With this background and the assumption of
“physical" realization of R, the problem is reduced to finding
the fixed point set Fiz(F' o R). Define z* = (¢*,p*) €
Fiz(F o R). The system is non-integrable; therefore, we
should introduce some numerical algorithm.

Figure 3(a), though coarse, depicts Fiz(F o R), which is
obtained using the algorithm developed in [17]. The result
indicates Fiz(F o R) forms a 2-dimensional surface. The

(a) Partial plots of Fiz(F o R), where ¢z is
omitted because g5 = —q7.

(b) Symmetric orbit for
q; =0.5

Fig. 3. Numerical results of symmetric orbits (ideal walking gait) of a
compass biped with the parameters: m1 = 2,mgo = 1.2, =0.2, L = 0.4.
The gaps result from roughness of the initial guess; they do not indicate
emptiness.

trivial one is the origin, which corresponds to the equilibrium
point. Figure 3(b) shows the phase portrait of symmetric orbits
starting from a fixed point in Fig. 3(a). The symmetric orbit is
mapped onto itself by R with its direction reversed. A similar
orbits in the top of Fig. 3(b) appear in the “ballistic walking
gait" in [18]. Our examination newly obtains the following
results.

(1) Symmetric orbits are at best neutrally stable (the char-

acteristic exponents [19] lie on S1).

(2) Symmetric orbits have at most three-times bifurcations.
The details will be presented elsewhere. Just note that these
symmetric orbits cannot be realized without control because
the actual impulse equation always perturbs the initial condi-
tion away from z*.

B. Symmetric walking controller

We have seen that uncontrolled symmetric orbits are at
best neutrally stable. However, using invariance control, we
can actively construct another controlled symmetric orbit
reversible to R. Specifically, we can obtain controlled sym-
metric orbits by setting the output function,

y=h(@)=q+ e, (1)
to zero and using a leg exchange scheme,
S@) ={z|lnl -7} =0, (12)

where § > 0 is the switching angle (scalar value), which is
later used for tuning convergence performance. We call the
controller that makes (11) zero combined with the switching
logic (12) symmetric walking control (SWC).

The idea of output zeroing of the function (11) is not
new. Intuitively, in a steady walk, a human swings her leg
opposite to the supporting leg. Some walking toys employ
a similar concept, where only the hip “joint angles" can be
constrained. The idea was also introduced in [20][21], where
stability analysis via Poincaré map with an impulsive effect
is performed.
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However, its systematic derivation from the viewpoint of
global stability has not been done before. These are developed
in the next section. Moreover, the obtained walking controller
differs markedly from the past proposed ones in the following
points. 1) We ensure global stability, not local stability. 2)
We do not require Poincaré map nor its attendant stability
analysis. 3) An invariance controller keeps the robot from
falling 4) A passivity-based controller enables control energy
and walking speed robustly, as explained in Section IV

C. SWC Properties

This section formulates SWC properties.
Proposition 3.1: Under (11) the controlled system (5) is re-
duced to the new 2-DOF Hamiltonian system with controlled

Hamiltonian
Hc(va) = 2]]\-4 p2 + (ml + 2m2)gL cos g, (13)
C
where M, = (my + mg)L? — 2mabL.

Lemma 3.1: Let F, be the Hamiltonian flow associated
with (13). R is a reversing symmetry of F. under (11).
Moreover, because of (12), the hybrid solution of the system
(5) is bounded to the set M; = {z € T*M | |¢| < 7}.

This lemma leads to one main result of this paper:

Theorem 3.1: Under (11) and (12) the following holds.

Fiz(F.oR) = M, (14)
Fixz(F;oRoF.0oR) = Mj, (15)

Therein, M;; and M;, are the semi-half subspaces
of M; defined as: M;u = M; N {z } lp| >

V2M (my + 2m2)gL(1 4 cosq)} and Mz = M; N {z |
Ip| < \/2M (m1 + 2m2)gL(1 + cosq)}.

Theorem 3.1 shows the global invariance of the solution in
M;1UM;o. That is, any solution starting from M;1UM s lies
on a symmetric orbit passing through the initial point! This
invariance is the theoretical basis of passivity-based orbital
stabilization developed in Section IV.

Therefore, the ideal walking gaits are generated. However,
one important assumption is the realizability of R. Consider
the dissipativity by the impulse equation at the leg exchange.
The equation can be represented simply by a map ([6])

Ry : (q1,92,p1,p2) — (—q1, —q2,1(q)p), (16)

in which det(n(¢)) < 1 (equality hold only for ¢ = 0).
Hence, R; is not an involutive, but rather a contracting map.
Therefore, the controlled Hamiltonian H. in (13) is found to
be piece-wise constant and meets the passivity relationship.

dH,

— <. 17

T (17
Thereby, we have obtained the second main result of the

paper:

Theorem 3.2: If there is an energy-dissipation at leg ex-
change, the invariant set of SWC is hybrid w-limit set L+ =
(g, —q,0,0) U (—q,q,0,0), which is globally asymptotically
stable on M.

<——  Symmetric orbit

Fig. 4. Phase portrait of the reduced 2-DOF system under SWC with § =
0.3. The solution starting from (¢(0),p(0)) = (—0.3,1.5) asymptotically
converges to the limit set (solid curve). If there is no dissipation at the
leg exchange, it becomes a symmetric orbit (bold-dashed curve). The dash
double-dot line indicates the separatrix.

Proof. From Lemma 3.1 the solution of the closed loop
system is bounded. Take H. (13) as a positive semi-definite
function. Then, Lemma 3.1 and LaSalle’s invariance theorem
[22] concludes the statement. 1
This is theoretical evidence of the statement in Section I-B;
under SWC, the robot does not fall in principle. However, if
we consider the slippage in contact between the foot and the
ground, M should be narrowed appropriately, otherwise, one
must consider the impulse reduction.

D. Numerical illustration

The phase portrait Fig. 4 illustrates Theorem 3.1 and The-
orem 3.2. This figure shows the reduced (controlled) 2-DOF
Hamiltonian flow ¢; of (13) with and without considering
the impulsive effect. Note that the origin is an unstable
equilibrium point (saddle). The separatrix and the switching
border |g| = G divides the phase space M into M;; (region
[ U III), M2 (region IT U IV).

In region I, ¢ is increasing monotonically (normal forward
walking). If there is no impulse effect, the solution returns
to the initial condition when it reaches the border. The
orbit is the ideal walking gait corresponding to R-symmetric
orbits. Note that the symmetric orbit is not isolated, but is
instead surrounded by other symmetric orbits corresponding
to different initial conditions (Recall the flow around a center
equilibrium of a single autonomous system). This is a direct
consequence of Theorem 3.1.

On the other hand, if the impulsive effect (16) at touchdown
is considered, the momentum is decreased stepwise. The
solution starting from region I eventually enters region II; the
direction of motion is changed. Once this happens, the flow
¢¢ is “trapped” in region II U IV. Then it finally converges to a
w-limit set: L™ = (g,0)U(—g, 0). As the states become close
to LT, infinitely many switchings occur. This phenomenon is
called Zeno [1]. Physically, the robot loses its kinetic energy
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Fig. 5.  Simulation results of a compass-like biped walking with: the
parameters M = 5,m = 1.2)L = 0.4,b = 0.2; the initial conditions
q1(0) = 0.2 = —q2(0), p1(0) = 1.2, p2(0) = —0.2; and switching angle
q = 0.2. (a),(c): symmetric walking gait. (b),(d): the robot finally stops at
Lt = (0.2,-0.2,0,0) U (—0.2,0.2,0,0). In both cases, the controlled
Hamiltonian H. is piece-wise constant during one walking cycle.

and stops with its legs contacting the ground (double support)
even though the switching “logic” may occur infinitely many
times. In this case, LT is globally asymptotically stable
because it does not depend on the initial condition.

Figure 5 shows simulation results. Figure 5(a) and 5(c)
depict an ideal conservative case, whereas Fig. 5(b) and
Fig. 5(d) depict the dissipative case, where the impulsive
effect at touchdown is considered. The bottom two graphs
depict the internal Hamiltonian Hj in (6) and the controlled
Hamiltonian H. in (13). In both cases, H. is step-wise
constant. Note that the scuffing of the swinging leg is dis-
regarded in this simulation. Because no type of compass-like
biped model can walk on a level surface without scuffing the
ground, the experimental model must have some leg retraction
mechanism.

IV. ORBITAL STABILIZATION USING PASSIVITY

We obtained global stability and passivity under SWC in
the previous section. Consequently, we are ready to develop
several passivity-based orbital stabilizations according to Step
2 in Section I-B. For the SWC-controlled system, orbital
stabilization is equivalent to controlling the orbital energy or
the walking speed. Additional DOF is required to put energy

Fig. 6. Model of a five-link biped robot with torso: (p1, p2) are the leg
forces and (71, 72) are the hip torques.

into the system.

The additional DOF is installed as in Fig. 6, which shows
the model of our planar biped walking/running robot Skipper
II [11]. The new coordinates from the compass-model is the
supporting leg length (g3, g4) and the attitude of the torso gs.
Let u = (p1, p2, 71, T2) be the control input.

In “walking mode", the leg length is kept constant during
the supporting phase. Also, the torso inclination is kept
constant. That is, the following output function is constrained
to zero.

y=nh(z)= (1 +q2, ¢3—70, @4 —7d, G5 — Q5d)T (18)

Where 7 is the natural length of the leg spring attached below
the knee joint, which is further utilized for dynamic running
motion [11]. The desired swinging leg length r; is designed
simply so that the leg retracts or extends in proportion to go.
Any retraction scheme that meets rq = rg when ¢ = q is
possible for a robot that has light-weight feet, as Skipper II
does.

A. Speed control by leg extension

First consider the simple impulsive control that compen-
sates energy dissipation at touchdown. For simplicity, suppose
that ¢ (torso length) = 0. Then, one can realize the inverse
map of R;

R2 : (qlanaplapQ) = (Q17QQ77771(Q)19)7 (19)

by exact (model-based) impulsive controller @, which meets
R=RyoR;.

Another option is a simple and robust control using the pas-
sivity of SWC. Thanks to the densely distributed symmetric
orbit on M;, one can use the impulsive controller

G=k(T(i—dq) if & <ig, (20)

where k(-) is an input transformation, I" > 0 is the gain, &
represents the walking speed, and &4 is its commanded value.
This controller does not require exact information on 7(q).
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Fig. 7. Animations of two kinds of speed-controlled walking. Only the
right leg motion is depicted for visibility. (a): Constant speed walking with
4 = 1.0 m/s. (b): Variable speed tracking with 4 = 0.5 — —0.5 — 0.5
m/s. the robot first moves forward, then turns backward and turns forward
again. Thin solid lines indicate the virtual pendulum between ZMP and CoG
(center of gravity). ZMP is shifted from the supporting point.
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Fig. 8. Time evolution of the state variables corresponding to Fig. 7(b)

Also, steady state error can be removed by adding integral
action.

B. Speed control by torso inclination

Non-zero inclination of the torso can be utilized for con-
trolling the walking speed. Specifically, this paper proposes a
controller of the proportional feedback form

¢sa = —T1(& — Za), (21)

where I';y > 0 is the gain. With this controller, the input
energy balances “automatically" with dissipated energy, which
leads to a limit cycle. The steady state error can be removed
by adding integral action.

The speed command z; can be set arbitrarily. For ex-
ample, Fig. 7 and Fig. 8 show simulation results of speed-
regulating/tracking walking. The robot starts from a standstill;
then the torso pitches forward and the speed increases. As
the speed approaches the desired value, the torso attitude
converges to a constant value. Thereby, asymptotically stable
walking gaits (limit cycles) with a specified walking speed
are achieved.

There is a limitation in acceleration because of the bound-
edness of the torso angle. The effective maximum torso
inclination is £ /2, which results in the limitation of energy

restoration. This affects the settling time of the walking speed.
The longer the torso CoG is, the more energy can be restored
during one walking cycle. It is also the same for larger g,
but large g leads to a high energy loss at touchdown, thereby
increasing the steady state error of the walking speed.

V. APPLICATION TO 2D AND 3D BIPED PROTOTYPES
A. Simulation 1: Robustness against disturbance

Before applying the controller to an actual robotic system,
a precise 3D simulator was constructed on LMS DADS®)
connected with SIMULINK® and various simulations were
carried out. To make the controller robust, the simulation and
later experiment use a simple PD-feedback.

u=—Kpy— Kqy (22)

Therein, K, > 0 and K4 > 0 are relatively high gains.

As one example, Fig. 9 and Fig. 10 show a robustness test.
In this simulation, the robot impacts with the wall during
steady walking of 0.5 m/s. Despite this disturbance, the robot
never falls. Instead, it merely stops. If the wall is removed,
then it starts to walk again. Robustness comes from the
invariance and the global stability of SWC (Theorem 3.1 and
Theorem 3.2).

B. Simulation 2: Symmetric 3D walking

The SWC can be applied to a 3D walking model without
any major modification. The only modification is the exten-
sion of the output function.

q1+ g2
q3 + qa
g5 —To
= h(x) = 23
4 () g6 — Td (23)
q7 — q7d
gs — 48d

Therein (¢1,42,93,q4) are the pitch and roll attitudes of
the legs, (gs,q5) are the leg lengths, and (g7,gs) are the
pitch and roll attitudes of the torso. The desired swinging
leg length r4 should be designed according to the attitude
cos~!(cos gz cosqy). Figure 11 and 12 show one simulation
result. Except for the orientation of the walking, which is
difficult to maintain for the robot having point-contact foot,
the stability and the behavior is the same as in the 2D walking
model. However, because of the collision avoidance between
the legs, some gain tuning is required.

C. Experiment: Speed-controlled walking

Because Skipper 111 is under preparation, only the experi-
ments with Skipper II are shown here.

Figure 13 shows a typical gait of the symmetric walking.
The robot stands on a tread mill. It is constrained to the
sagittal plane by two transparent acrylic plates. It carries an
attitude sensor comprising a gyro and an inclinometer at the
torso; simple On/Off sensors at the feet detect the ground
contact. In the current experimental setup, the walking speed
is estimated from joint angles because position sensors are
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Fig. 9. A robustness test: during steady walking of 0.5 m/s, the robot

impacts with the wall. However, the robot does not fall. It merely decreases
the energy and stops. If the wall is removed, then it begins to walk again.
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Fig. 10. Time evolutions corresponding to Fig. 9: After impact at 9.23 s,
the walking speed decreases and finally converges to zero around 12.5 s (left
bottom). Because the commanded speed is fixed to 0.5 m/s in this example,
the torso attitude still increases (right top).

Fig. 11. 3D animation of symmetric walking.
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Fig. 12. Time evolution of the state variables during 3D symmetric walking.
The commanded walking speed is 0.5 m/s to the forward direction.

1461

Fig. 13.  Snap-shot of the walking experiment: The robot initially stands
still. When the speed command is set to some positive value, the torso pitches
forward and then starts to walk.
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Fig. 14. Time evolution of some state variables during a long-distance and
high-speed walking experiment on tread mill. The commanded speed is a
ramp signal of 0-0.75 m/s. Asymmetry in the top graph comes from the
slippage of the legs and the dely of the PD-feedback.

not installed. Figure 14 shows the time evolution of the main
state variables during long-distance and high-speed walking
experiments. The bottom graph indicates that the error is
very small. One can start a walking experiment from any
initial conditions. In this experiment, a variable feedback gain
'y = |& — 44| and variable step length § = T3]z — gy
are introduced to improve tracking performance. Because the
behavior is almost identical to that in simulations, we do
not repeat their explanations. But note that the information
regarding physical parameters such as mass distribution or
length is not required to obtain a stable limit cycle because



SWC is not a conventional model-based controller.

VI. DISCUSSION
A. Advantages of SWC

The SWC combined with passivity-based controller allows
restoration of the total mechanical energy and control of
the walking speed. Solutions starting from any point in the
domain M converge globally to a stable limit cycle or stable
hybrid w-limit sets. Global stability was proved theoretically
using the invariance principle. The controller is written in a
program of very small size: it can be easily implemented on an
inexpensive micro-controller. Moreover, the control parameter
is actually the switching angle g only. There is no room for
“trial-and-error". The SWC has strong passivity and robust-
ness against disturbance. That passivity is especially useful for
human-safety functions, which conventional trajectory-based
controllers do not support. For example, when the desired
speed is set to zero, the robot can stop even if an unknown
disturbance is applied. The settling time depends on the
magnitude of the disturbance. Alternatively, the disturbance
can be transferred to the propulsion energy of walking: a sort
of an externally-driven walking just like pushing a tire on
the floor. The SWC can be utilized as an ‘“‘auto balancer"”
of bipedal humanoid robots, which may be activated at the
lowest layer of the whole control system.

Its strong stability and robustness will encourage applica-
tion of SWC to many kinds of bipedal robot without major
modifications. We have succeeded in simulating the stable 3D
walking of Skipper III. We have also succeeded in simulating
stable walking of a five-linked planar anthropomorphic biped
robot with a “passive knee joint" using an inexpensive four-
line controller in which the mechanical energy is compensated
not only by the torso inclination, but also by the ankle torque
at the double support phase [8].

B. Road to running: Impulse reduction, input optimization

Energy loss attributable to the impact is unavoidable in
stiff walking. This is a direct consequence of the impact
equation (16). However, the energy loss can be reduced if the
leg is compliant. Moreover, kinetic energy can be restored
into the spring mechanism. Compliant leg actuation with
a spring mechanism leads to energy preserving symmetric
running controller implemented in [11]. We have obtained
speed controlled walking by torso inclination. For that reason,
we expect that speed-controlled running can be achieved in
the same context.

In this regard, the transition from walking to running will
be an interesting problem. Our precise simulations showed
that, for walking faster than 1.33 m/s, which corresponds to
Froude number = i% /(gL¢) = 0.45, the robot slipped on the
ground; thereby, a very short period of flight occurred. This is
almost the same conclusion of a preferable walk-to-run tran-
sient speed, similar to that discussed in biomechanics studies
(e.g. [23]). Faster locomotion without slipping is possible
only if a sufficient ground reaction force is provided by an
“extending leg". In this case, the mechanical energy is restored

not only by leg extension, but also by torso inclination. Even
when some ankle torque is available, because of the ZMP
limitation, we ultimately rely on leg extension to increase the
energy. This phenomenon leads to hip-torque reduction. We
expect optimal walking and running gait to be realized using
a “single controller". All these expectations will be tested
during experiments using Skipper prototypes.
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