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Abstract

In this paper, we present a novel controller for a pas-

sive one-legged hopping robot. First, based on the dy-

namics of this nonlinear hybrid system, we derive a

simple control law to ensure the total energy preser-

vation and continuation. Simulation results show

that the robot can hop from the wide set of initial

conditions. The generated hopping gaits are found to

be quasi-periodic orbits, which can be seen in some

Hamiltonian systems. Next, we propose a simple pa-

rameter adaptation law to asymptotically stabilize the

quasi-periodic gaits to the periodic gaits of arbitrary

period, and spring sti�ness adaptation law to mini-

mize control inputs. Simulation results show that the

robot eventually hops without any control inputs, es-

pecially for 1-periodic gait. We believe that the con-

trollers we invented have much potential for energy-

eÆcient control of legged running robot.

1 Introduction

After the Raibert's excellent works [1], one-legged
hopping robots attached with only the leg spring,
have been widely studied both experimentally [2, 3,
4, 5] and theoretically [6, 7, 8].

In addition to the leg spring, hip spring also plays
important role for animal running [9]. It enables the
leg to be swung passively. Tompson and Raibert
showed that spring-driven one-legged hopping robot
shown in Figure 1, can hop without any inputs, pro-
vided if the initial conditions are appropriately cho-
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Figure 1: Passive one-legged hopper

sen [10]. Therefore, this model is a good template
model for the purpose of studying energy-eÆcient
running. Since this model is shown to be marginally
stable and eventually falls without controls, some
suitable controller should be applied to ensure the
stability.

Ahmadi and Buehler applied Raibert's celebrated
Foot Placement Algorithm [1] to this passive hopping
robot, in which the Neutral Point should be pre-
approximated. They realized energy-eÆcient hop-
ping in simulation and experiment [11, 12]. On the
other hand, Fran�cois and Samson derived new con-
troller di�erent from Raibert's [13]. They applied
general control method used in nonlinear oscillatory
system. That is, �rst constructing Poincare map
(discrete system), then linearizing it around �xed
points, and �nally applying some linear feedback to
get asymptotically stable periodic orbit. However,
since the model cannot be integrable, both examples
above need approximated models, or approximated
periodic solutions, to derive the controllers. There-
fore, there remains static error comes from the mod-
eling error.

In this paper, inspired from Fran�cois and Samson's
work [13], we present a novel controller to realize
energy-eÆcient one-legged hopping. Instead of de-
pending on some pre-planned periodic solutions, or
target dynamics, here we utilize the intrinsic dynam-
ics of the original nonlinear hybrid system to make
the robot generate natural hopping gaits. A model
description is the same as those in [13] and reviewed
in Section 2. Since our goal is energy-eÆcient hop-
ping, we explore the condition of energy-preservation
and continuation in Section 3. Then, we derive a
control law to ensure those conditions and show the
simulation resuts in Section 4. In Section 5, two
parameter adaptation laws, one for asymptotic sta-
bilization to desired periodic gait, and the other for
input minimization, are given.

Simulation results shows that the controllers we in-
vented have much potential for energy-eÆcient con-
trol of legged running robot.
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Figure 2: Model de�nition

2 Model description of passive hopping

robot

We consider exactly the same model of passive hop-
ping robot as [13] in this paper. In this section, the
model description is reviewed.

2.1 Model de�nition and notation

We consider the planar one-legged hopping robot
shown in Figure 2. The robot is attached with not
only the leg spring but also hip spring.

We impose the following assumptions on the model
as seen in many related literatures.

(A) The center of mass (COM) of the body is just
on the hip joint and COM of the leg lies on the
leg

(B) Mass of the foot (unsprung mass) is negligible

(C) The springs are mass-less and non-dissipating

(D) The foot does not bounce back, nor slip the
ground (inelastic impulsive impact)

In addition to these assumptions, we further suppose,
just for the simplicity, that the COM of the robot is
on the hip joint without loss of generality. Table 1

summarizes the variables appear in this paper. The
equations of motion are composed of four phases;
stance phase, lift-o� phase, ight phase, and touch-
down phase. Table 2 de�nes the phase-indicating
suÆx of the variables. For example, _xlo represents
the forward velocity of COM at the lift o�. Table

Table 1: Variables

Meaning Unit

x horizontal position of hip m
z vertical position of hip m
r leg length m
� body angle rad
� leg angle rad
f applied force of leg N
� applied torque of hip N
� energy dissipation
E total mechanical energy J
Ts stance time s
Tv ight time s

Table 2: Phase-indicating suÆx

SuÆx Meaning

td- just before touch-down
td+ just after touch-down
lo lift-o�

Table 3: Physical parameters

Meaning Unit Value

g gravity acceleration m=s2 9.8
M total mass kg 12
r0 natural leg length m 0.5
Jb body inertia about hip kgm2 0.5
Jl leg inertia about hip kgm2 0.11
Kl leg spring sti�ness N/m 3000
Kh hip spring sti�ness Nm/rad 10

3 shows the physical parameters, together with the
values used in later simulations.

2.2 Equation of motion

At the stance phase, the leg compresses and extends,
and the angular momentum of the robot around the
contact point evolutes under the gravity �eld.

8<
:

M �r +Kl(r � r0)�Mr _�2 =Mg(1� cos �) + f

Jl
�� + Jb

��+ d

dt
(Mr

2 _�) = rMg sin �

Jb
��+Kh(� � �) = �s

(1)

Here, f is the control force to the leg, while �s is
the control torque to the hip joint, which is applied
during stance. The spring is initially loaded with the
same value of gravity force (Mg).

At the ight phase, COM of the robot moves along
the ballistic ight path and the angular momentum



of the robot around the COM is preserved.8>><
>>:

�x = 0
�z = �g

Jl
�� + Jb

�� = 0

Jb
��+Kh(� � �) = �v :

(2)

Here, �v represents the control torque to the hip
joint, which is applied during ight.

By the assumption (D) in Section 2.1, the veloci-
ties of the generalized coordinates change instanta-
neously at the touch-down phase, according to the
following equations.8>>>>><

>>>>>:

_xtd+ = _xtd� �
Jl cos �td

Jl+Mr2
0

�td�

_ztd+ = _ztd� �
Jl sin �td

Jl+Mr2
0

�td�

_�td+ = _�td� �
Mr0

Jl+Mr2
0

�td�

_�td+ = _�td�
_rtd+ = _ztd+ cos �td � _xtd+ sin �td:

(3)

Here,

�td� := _xtd� cos �td + _ztd� sin �td + r0
_�td�: (4)

At the lift-o� phase, there is no discontinuous
changes except for _rlo = 0.

3 Analysis on the energy preservation

and continuation

For a passive running robot, the analysis on the en-
ergy is important because, during complete passive
running, the total mechanical energy is conserved.

According to (3), the energy change between just
before touch-down and just after touch-down is cal-
culated to be

Etd+ �Etd�

=

�
1

2
M( _x2 + _z2) +

1

2
Jb

_�2 +
1

2
Jl
_�2
�td+
td�

= �

MJl

2(Jl +Mr2
0
)
�
2
td�

: (5)

We call �td� \Energy Dissipation CoeÆcient" be-
cause, if the condition

�td� = 0 (6)

holds at touch-down and no input is applied to the
robot, then total mechanical energy of the system
is preserved during hopping. Of course if we apply
some control inputs, then the internal energy is not
conserved. But we can say that (6) is necessary con-
dition for complete passive running.

Next, we consider the conditions for the robot to
sustain hopping without falling to the ground. We
can see the condition is found to be

_rtd+ < 0: (7)

This is the condition for the axial velocity of the
leg just after touch-down to be negative. This is
well understood if we recognize from Section 2.2 that
the necessary condition for the robot to be in the
stance phase is r < r0. Unless this condition holds,
the hybrid system cannot switch to the stance phase
from the ight phase, and hence, it cannot continue
time evolution. Note that (7) is not always satis�ed.

4 \Non-Dissipative Touch-Down Con-

trol" and quasi-periodic hopping gait

4.1 Control goal

Due to the compactness of the phase space, if the
continuous time evolution is ensured and the total
energy is preserved, the solution of this hybrid non-
linear system lies on periodic orbits on the energy-
invariant manifold. This invariant hybrid ow is the
gait we are searching for. Therefore, we derive con-
troller to ensure the both condition (6) and (7), and
call this new controller \Non-dissipative Touch-down
Control ".

We can do this by applying control inputs only at the
ight phase, and allowing the robot freely to move at
stance phase with zero inputs. The reason why we
are doing so is that if no energy dissipation occurs at
touch-down (�td� = 0), there is no interaction be-
tween the robot and environment, even we use apply
control inputs at ight phase. Then, the total me-
chanical energy of the robot \including power source
of the actuators", is exactly preserved. Energy pre-
serving gait in this sense, is what we want.

Since we are using the control torque only at the
ight phase, we de�ne the control input � as follows.

f = �s = 0; (8)

�v =: �: (9)

Our control problem is to �nd the control input �
that makes the robot land at the time Tv, with
(�td; _�td�) satisfying (6) and (7), for any given lift-o�
states ( _xlo; �lo; _�lo; �lo; _�lo). Though this is the dead-
beat control to bring Tv, �td, and _�td� to the desired
values, we have only to choose some Tv and �td, be-
cause _�td� is automatically calculated by (6). There
are, however, a large number of such pairs (Tv; �td)
satisfying (7). Here, we choose the simplest values
as follows.

First, we determine Tv so that the vertical velocity
at touch-down and lift o� is the same in magnitude
and opposite in direction,

Tv =
2 _zlo
g
: (10)



Next, we choose desired touch-down angle �� to be
symmetric to the lift-o� angle about vertical axis,

�� = ��lo: (11)

Then, from (6) we obtain desired touch-down angular

velocity
�_� as,

_�td = �

1

r0
( _xtd� cos �td + _ztd� sin �td)

= �

1

r0
( _xlo cos �lo + _zlo sin �lo)

= _�lo =:
�_�: (12)

Additionally, considering

_ztd+ = _ztd� = _zlo � gTv (13)

_xtd+ = _xtd�; (14)

we obtain

_rtd+ = ( _zlo � gTv) cos �td � _xlo sin �td

= � _zlo cos �lo + _xlo sin �lo

= _rlo: (15)

Therefore, the condition (7) is ensured if and only if
_rlo > 0.

Again, note that (10) and (11) is no more than the
one of the options.

4.2 Derivation of the controller

Using new variables:

 = � � �; (16)

� = Jb�+ Jl�; (17)

the dynamics of ight phase can be rewritten as,8>><
>>:

�x = 0
�z = �g

� +
2
h
 = �



2

h

Kh

�

�� = 0:

(18)

Since these are the independent second order linear
ODEs, we can easily dead-beat  and _ , by once-
switching of the constant inputs.

Discretizing (18) using the piecewise constant inputs,

� =

�
�1; if 0 � t < Tv=2
�2; if Tv=2 � t < Tv;

(19)

where t is the time after the lift-o�, and integrating
(18), the control inputs can be calculated as follows.�

�1

�2

�
= B(Tv)

�1

�� � 
�_ 

�
�A(Tv)

�
 lo

_ lo

��
; (20)

where,� � 
�_ 

�
=

1

Jb

�
(Jb + Jl)

� ��
�_�

�
+ C(Tv)

�
�lo

_�lo

��
; (21)

and,

A(Tv) =

�
cos(
hTv)

1


h

sin(
hTv)

�
h sin(
hTv) cos(
hTv)

�

B(Tv) =
1

Kh

�
cos(
hTv) cos(
hTv

2
)

�
h sin(
hTv) �
h sin(

hTv

2
)

�

C(Tv) =

�
1 Tv

0 1

�
:

Since det(B(Tv)) =

h

K2

h

sin(
hTv

2
) holds, control in-

puts (20) always exist, unless Tv = 0, or Tv =
2�


h

.

4.3 Simulation results and discussion

We have simlulated the action of the Non-Dissipative
Touch-Down Control (19), (20) and (21), together
with (10)-(12), for wide range of initial conditions.
Figure 3 depicts the time evolutions of state vari-
ables ( _x; �; �; z) and the energy level E, and the step-
wise inputs (�1; �2). The lower three small graphs
represent the selected images of the Poincar�e map.
Here, the free parameters of initial values are chosen
to be �0 = 0:25[rad] and _x0 = 2[m/s]. This corre-
sponds to middle speed of hopping for the robot of
Table 3.

We can see from the images of the Ponincar�e map
that the obtained gaits are quasi-periodic ones that
can be seen in some Hamiltonian systems [14]. Their
periods depend on the initial conditions.

5 Stabilization of periodic orbits

5.1 Stabilization to a desired periodic orbit

by adaptation of touch-down angle

As mentioned in the previous section, if the solu-
tion eventually converges to the 1-periocic orbits,
then the inputs also converge to the constant val-
ues. What should we do to change the period ? Re-
member Section 4.1, where we said the choice of the
desired touch-down angle is not unique.

We invented the following stepwise adaptation law:

�(k) =

�
�

1

2
(�lo(k) + �lo(k � p)); if k > p

��lo(k); else:
(22)

Here, k � 1 is the iteration step, and p � 1 is the
desired period.

We also note that this method is similar to Pyragas's
method [15] to stabilize some chaotic orbits to the
desired periodic orbit, if we consider the touch-down
angle as a control inputs to the discrete dynamical
system (Poincar�e map of the system).
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Figure 3: Simulation result of \Non-Dissipative

Touch-Down Control". The lower four small graphs

represent the selected images of the Poincar�e map.

From this, you can see the gait obtained is quasi-

periodic one.

5.2 Input minimization by adaptation of

spring sti�ness

During walking or running, animal may adapt their
joint sti�ness by varying the tension of the antago-
nistic muscles to minimize energy consumption. In
order to simulate such a adaptation mechanism, we
examine an adaptation law for the sti�ness of the hip
spring to minimize the control inputs.

Since we are using piecewise constant inputs, the
simplest adaptation law will be given as:


h(k + 1)

=

(

h(k) +  f�2(k)� �1(k)g ; if k > 2q
Kh(

1

Jb
+ 1

Jl
); if k = 1;

(23)

where,  > 0 is the adaptation gain.

5.3 Simulation results and discussion

Because of the rack of the space, only the result of the
stabilization to 1-periodic gait is shown. Figure 4

shows the time evolution, where the touch-down an-
gle adaptation is activated from the beginning, while
the spring sti�ness adaptation is activated from the
60th step for visibility. The initial conditions are the
same as those of Figure 3. We have drawn the line
between the points (images) of the Poincar�e map, for
visibility. We can see from the �gure that the adap-
tation laws works well and control inputs eventually
converges to zero ! Thus, we have succeeded in com-
plete passive running. It is not surprising that phase
volume is contracting because the system is not ac-
tually Hamiltonian.

We have also simulated stabilization to an arbitrary
periodic gaits and con�rmed that the periods of so-
lutions converge to the desired one. But the com-
plete passive running has not yet been succeeded for
multi-periodic gait. We also observed there are sig-
ni�cant di�erence in convergence speed, depending
on the initial conditions.

6 Conclusion

We presented a novel controller for stabilization of
a passive one-legged hopping robot. First, based on
the dynamics of this nonlinear hybrid system, we de-
rived a simple control law, Non-Dissipative Touch-

Down Control, to ensure the energy preservation
and continuation. The generated hopping gaits were
found to be quasi-periodic orbits, which can be seen
in some Hamiltonian systems. Next, we proposed
a simple parameter adaptation law to asymptoti-
cally stabilize the quasi-periodic gaits to the periodic
gaits of arbitrary period, and spring sti�ness adapta-
tion law to minimize control inputs. Simulation re-
sults demonstrated that the robot can eventually hop
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Figure 4: Simulation results of the stabilization to

1-periodic gait and the adaptation of spring sti�ness.

Control inputs eventually converge to zero.

without any control inputs, especially for 1-periodic
gait. Our current study includes robustness analysis,
derivation of tracking controllers, and the application
to the one-legged robot \Kenken" [5], or to the biped
and quadruped robot under construction.
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