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Abstract— In this paper, we report on passive running
of planar one-legged, biped, and quadruped robots. The
topic includes the analysis of passive running gaits and their
orbital stabilization. For one-legged robot, two stabilizing
controllers that asymptotically stabilize periodic passive gaits
are derived. In particular, the second controller is based on
“energy-preserving principle” and its original form generates
interesting quasi-periodic running gaits, which can be seen
in Hamiltonian system. The controller is extend to a planar
biped robot with torso, which does not have any passive
running gaits. Combining simple attitude controller at stance
phase generates stable periodic running gaits. For a planar
quadruped robot, with an advanced gait searching algorithm,
some fundamental proterties of the passive running gaits, such
as stability or symmetry, are observed.

I. INTRODUCTION

After the Raibert’s excellent works [1], running robots
have been widely studied both experimentally [2][3][4][5]
and theoretically [6][7][8]. In the fast running control,
energy-efficiency is especially crucial for autonomous
robots (including biped humanoid robots or quadruped
robots) because it directly extends their operation time.
In this connection, there are some remarkable researches
on passive running, where the passive running means
“unforced” periodic running. Tompson and Raibert showed
that spring-driven one-legged hopping robot can hop with-
out any inputs, provided if the initial conditions were
appropriately chosen [9]. Ahmadi and Buehler applied
Raibert’s algorithm to this robot and realized energy-
efficient hopping in simulation and experiment [10][11].
François and Samson derived a rather systematic controller
based on linearization of the periodic orbit [12].

In this paper, we report on our research motivated from
the above works: passive running of planar one-legged,
biped, and quadruped robots. The robots are installed with
linear springs at the telescopic knee joints and torsional
springs at the hip joints. These springs assign strong pas-
sive dynamics to the robots. Doing so, we expect the robot
exhibits passive periodic running gaits for appropriately
chosen parameters and initial conditions.

However, it is almost impossible to obtain analytical
solution even for simple 2 DOF case [7]. Threfore the
solution can be found numerically. If we can “luckily”
find the passive gaits, the next stage is their stability
analysis. Even if they are unstable, when the system has
some controllability, we can design the controllers, which
asymptotically stabilize the gaits. This is a stabilization

problem of nonlinear hybrid oscillator, which has not
been well discussed. Thus obtained limit cycle is utmost
important for energy-efficient locomotion because it does
not require any control input when the solution lies on the
limit cycle. Moreover, if the controller extends the region
of attraction, it directly links to the application to more
realistic robot models. If we cannot find any passive gaits
unfortunately, we can find some controllers that generate
stable limit cycle, in some cases.

Our approach to the analysis and control of passive
running robots is different from previous studies in the
following sense:

1) We do not rely on some approximations or linearized
equations

2) We do not assume the leg has neglgible mass, and
consider the impact between the leg and the ground

3) We design feedback controllers based on “energy-
preserving principle”

The first point is important for stability analysis and for
generation of control inputs that converge to zero when
stabilization is achieved. Otherwise, we will have steady-
state error. The second point is to reveal the true behavior,
which the real robot exhibits. In a simple model, many
literature neglect the mass of the leg, and hence, the impact
between the foot and the ground. Mass-less leg hides
the behavior of the counter-oscillation of the body, and
exclusion of impact phenomenon leads to incorrect stability
analysis and the controller design. The third point is to
derive energy-efficient controllers: energy-preservation is
the essential necessary condition of stable passive running.

We will show the above approach by three specific ex-
amples; planar one-legged, biped, and quadruped running
robots. In Section II, the analysis and control of a passive
one-legged running robot is provided. With new results
on stability analysis, a local feedback controller is derived
and our previously derived stabilization controller, which
asymptotically stabilize unknown (multi) periodic passive
gaits, is discussed.

Section III extends the controller of one-legged model
to a planar biped model having a torso. This biped model
is the example that any passive gaits are not found. Com-
bining a simple attitude controller at stance phase, we try
to stabilize unknown periodic biped running gaits.

Section IV shows numerical search on passive running
gaits of planar quadruped robot. Planar quadruped running
is composed of several phases and this complicates the

0-7803-8463-6/04/$20.00 ©2004 IEEE



gait analysis. To this end, numerical algorithm in one-
legged model is modified. We show two interesting passive
running gaits and their properties.

II. ONE-LEGGED RUNNING ROBOT

A. Model

We consider one-legged passive running robot shown in
Fig. 1. The robot is attached with not only a leg spring but
also a hip spring. The generalized coordinates are defined
as the position of center of gravity (CoG) (x, z), the leg
length r, and the attitude of the body and the leg (φ, θ).
The control inputs are the leg force f and hip torque τ .
These are applied parallel to the springs. Table I shows
the physical parameters, together with the values used for
numerical analysis.

The following assumptions are imposed on the model:

(A) Mass of the foot (unsprung mass) is negligible
(B) The foot does not bounce back, nor slip the ground

(inelastic impulsive impact)
(C) The springs are mass-less and non-dissipating

Assumption (A) means the foot of the robot is mass-less,
and hence, there is no inertial force due to the foot mass.
Of course, this assumption cannot be satisfied exactly in
real machine, but it is rather easy to make foot lightweight
because the foot is a simple rod. Thanks to this assumption,
there is no impulse along the leg axis.

On the other hand, when the robot receives the impact
of perpendicular direction to the longitudinal axis of the
leg, energy less occurs due to the inertia of “upper part”
of the leg. If the foot is too repulsive, it may bounce back
due to this impulse and the robot cannot touchdown the
ground appropriately. However, for our robot, it is easy
to make the foot lightweight, its restitution low. More
importantly, our controller minimizes touchdown impulse
normal to the longitudinal axis of the leg, as shown later.
Therefore, assumption (B) on inelastic impulse model
represents touchdown dynamics of our one-legged robot
most effectively. Assumption (C) is not restrictive one
because it is easy to compensate energy loss by applying
leg force f .

The equations of motion are presented in [13]. A running
motion is composed of successive phase transitions; Stance
→ Flight → Stance → · · ·. Between Stance and Flight,
thre are discrete events; Touchdown and Lift-off. Table II
defines the phase-indicating subscripts for variables. For
example, ẋlo is the forward velocity of C.M. at Lift-
off, θ̇td+ is the angular velocity of the leg just before
Touchdown, θtd is the leg angle of just before, or, just
after Touchdown, and so on.

B. Passive running gaits

To search the passive running gait, Poincaré map is
constructed because the existence of the fixed point of
Poincaré map means that of passive running gait. To find
the fixed points, the Newton-Raphson method is employed
as follows.
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Fig. 1. Passive one-legged hopper

TABLE I

PHYSICAL PARAMETERS OF ONE-LEGGED MODEL

Meaning Unit Value
g gravity acceleration m/s2 9.8
M total mass kg 12
r0 natural leg length m 0.5
Jb body inertia kgm2 0.5
Jl equivalent leg inertia kgm2 0.11
Kl leg spring stiffness N/m 3000
Kh hip spring stiffness Nm/rad 10

With the state variable x = [x, θ, φ, ẋ, ż, θ̇, φ̇]T

and the cross section h(x) := z − r0 sin θ = 0 (just after
Touchdown), the Poincaré map can be represented as:

xn+1 = P (xn), (1)

where n is the number of strides. We want to find a solution
x of (1) that maps onto itself, i.e. a solution satisfies the
equation:

G(x) = x − P (x) = 0 (2)

The search space is 7-dimensional. We use Newton-
Raphson method for root seeking, where an initial guess
for the fixed point is given and then updated based on the
following scheme.

For small changes in the state variables, the change in
P is approximated by its Taylor series,

P (x + ∆x) = P (x) + DP (x)∆x + O(x), (3)

where DP (x) = ∂P (x)
∂x and O(x) represents higher order

term.

TABLE II

PHASE-INDICATING SUBSCRIPTS

Subscript Meaning
td- just before Touchdown
td+ just after Touchdown
td just before, or after Touchdown
lo Lift-off
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Fig. 2. Gait searching algorithm

Therefore, we have

DG(x)∆x = −G(x)
⇒ ∆x = (I − DP (x))−1(P (x) − x), (4)

where x is the value of the states of the return map cal-
culated at the nth stride. Therefore, we have the following
update scheme with a given initial guess x0 ,

xk+1 = xk + (I − DP (xk))−1(P (xn) − xn), (5)

where the index k corresponds to the number of iterations.
The algorithm is summarized in Fig. 2. Note that in

addition to the solution x(t), DP should also be calculated
numerically. Also, if there are jump in the solution x due
to the impact, DP also should be processed accordingly.
See [14] for the details.

For the one-legged model, this algorithm converges
rapidly, and we can obtain multiple passive running gaits.
The solutions exist for every admissible initial condition
and they are actually loss-less, i.e. no energy is dissipated.

For example, a fixed point x = [−0.3129, 0.6763,
−0.1198, 5.0000, −2.0760, −5.2004, 1.2818] correspond-
ing to high speed passive running as shown in Fig. 3.
Its stability can be found from the eigenvalue of DP . In
this case eig(DP ) = [−5.6574, 2.0839, −0.1800, 0.0070,
0.0000, 0.0000, 0.0000]. Since the first two elements lie
outside the unit circle on the complex plane, we can
conclude the passive gait is orbitally unstable. All the other
solutions are found to be unstable, except for trivial vertical
hopping.

C. Local stabilization by linear feedback

Having obtained passive gaits and checked their stability,
we should find appropriate stabilizing controller. Here we
show two kinds of controllers in the sequel.

The first one is local stabilization by linear feedback
controller. In the above example, we have two unstable
manifolds regarding above two unstable eigenvalues. For
example, we can apply control input τ at the flight phase:

τ =
{

τ1, if 0 ≤ t < Tv/2
τ2, if Tv/2 ≤ t < Tv

(6)
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Fig. 3. Subsequent two steps of 1-periodic passive running gait. Running
speed is 5 m/s. The robot moves from left to the right.

, where τ1 and τ2 are constant values, t is the time after
the lift-off, and Tv := 2ẋlo/g means “expected” flight time.
Then, we obtain the closed loop system that is stabilizable:

xn+1 = DPxxn + DPu

[
τ1

τ2

]
, (7)

where DPx is the same as DP in the previous section and
DPu = ∂P

∂u = ( ∂P
∂τ1

, ∂P
∂τ2

) is newly appeared derivative by
introducing control input (6).

If we place the two unstable pole to zero, we can
stabilize all of the unstable passive gaits obtained in the
previous section. However, the region of attraction is found
to be quite narrow because the controller is local. Actually,
it is found by simulation that the local controller does not
allow even 0.05 m/s error in initial velocity ẋ0.

D. Stabilization based on energy-preserving principle

We show an alternative controller based on its energy
analysis, firstly proposed in [15]. The underlining principle
is energy-preservation. This means the controller preserves
system energy as much as possible. The most important
reason why we use this principle is; if the system energy
is preserved, it is expected that the system autonomously
generate natural periodic gaits, just as some class of
Hamiltonian system exhibit natural periodic orbit. Instead
of depending on some pre-calculated periodic solutions, or
target (desired) dynamics, analysis on energy change of
the original nonlinear hybrid system are utilized as shown
below.

First, we choose desired touchdown angle θd and angular
velocity θ̇d at the moment of lift-off to meet the following
energy non-dissipation condition:

µtd− := ẋtd− cos θtd + żtd− sin θtd + r0 = θ̇td− = 0 (8)

Since the energy change between just before and after
touchdown is calculated to be:

Etd+ − Etd− = − MJl

2(Jl + Mr2
0)

µ2
td−, (9)

the condition (8) means there is no energy exchange
between the robot and the ground, provided no control
input applied during stance phase. Having determined θ d

and θ̇d, finally we can apply the same controller (6), which,
in this time, becomes linear dead-beat controller.

As a result, interesting quasi-periodic orbits [16], which
can be seen in some Hamiltonian system, are found [15].
Fig. 4 depicts such a simulation result. Herein, the free
parameters of initial values are chosen to be θ0 = 0.25
[rad] and ẋ0 = 2 [m/s] (off the fixed point). The region
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Fig. 4. Simulation result of Energy-Preserving Touchdown Control: The
top two graph shows time evolutions of energy level (E) and control
inputs (τ1 and τ2). The lower four graphs represent the selected images
of the Poincaré map, where notation “D” represents the time derivatives
of preceding variables. Please note that the position x is manually reset
at each iterative crossing of the section, for visibility. Although all the
points are bounded in some regions, there are no fixed points appeared.
From this, we can see the gait obtained is quasi-periodic one.

of attraction is very large if we do not specify forward
velocity. It is quite different point from the above local state
feedback controller. Since the gaits obtained are nonlinear
flows on an invariant manifold

Ėsys := Ė − τψ̇ = 0, (10)

if there is a sudden change of energy level, the gait jumps to
new quasi-periodic orbits, hence we can say the controller
has some robustness against disturbance.

Thanks to the similar recurrent property between quasi-
periodic orbits and chaotic orbits, we can apply a de-
layed feedback-like controllers for chaotic system [17], to
asymptotically stabilize quasi-periodic gaits to (unknown)
periodic ones “having desired period”. Specifically, θd can
be chosen as follows.

θd(k) =
{ − 1

2 (θlo(k) + θlo(k − p)), if k > p
−θlo(k), else,

(11)

where k > 1 is the iteration step and p > 1 is a
desired period. A general form of delayed feedback and its
limitation can be found in e.g. [18]. Note that the desired
angular velocity θ̇d(k) is automatically determined by (8)
accordingly. Especially for 1-periodic gait (p = 1), with an
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Fig. 5. Simulation results of the orbital stabilization controller and
adaptive enegy controller. The top two graph shows time evolutions of
energy level (E) and control inputs (τ1 and τ2. The lower four graphs
represent the selected images of the Poincaré map, where notation “D”
represents the time derivatives of preceding variables. Please note that
the position x is manually reset at each iterative crossing of the section,
for visibility. The input minimization via adaptive energy controller
is activated from the 60th step. You can see the images of Poincaré
map asymptotically converge to one fixed point and the control inputs
eventually converge to zero!

additional adaptive energy controller, the robot eventually
hops without any control inputs, that is, complete passive
running is obtained. Fig. 5 is an example of simulation
results, which shows the complete passive running. The
detailed description and results can be found in the litera-
ture [13].

III. BIPED RUNNING ROBOT

In this section, a planar biped running is presented. The
biped model is the example that we cannot find passive
solution. As described in Section I, even we cannot find
any passive gaits, we may find some controllers, which
generate stable limit cycle, where the control inputs can
be made small enough although it cannot be zero.

A. Model

Figure 6 shows a planar biped robot considered here. The
robot has two springy telescopic legs swinging around hip
joints. Leg actuators are mounted parallel to the leg spring.

The generalized coordinates are defined as the position
of CoG, x = (xg , zg)T ∈ R2, the attitude of the torso, φ ∈
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Fig. 6. Biped running robot

R1, and joint angles, ψ = (ψ1, ψ2)T ∈ R2. Table III shows
the physical parameters, together with the values used in
later simulations. This model is highly nonlinear because it
has massive legs and torso, whose CoG are located away
the hip joint. We suppose the same assumption as one-
legged case. The equations of motion are shown in [19].

B. Passive running gait searching

We have applied almost the same numerical algorithm
(Fig. 2) to find passive biped running gait. Only the number
of the phase is increased because the robot has two legs.
Wherein, the hip springs are installed as in the case of one-
legged model to make the leg swung passively. However,
no passive running gaits, except for trivial solution (vertical
hopping), were found. The reason seems to lie on the torso
located above the hip joint. It is known that a torso mounted
below the hip joint has passive stability [2]. Therefore, in
contrast to one-legged robot, in which no control inputs
are applied, the biped robot cannot hold its torso upright
posture without pitch control, because of reaction forces
from hip joints. Our analysis implies that just installing
hip spring between the torso and the leg is not enough to
keep the torso upright.

TABLE III

PHYSICAL PARAMETERS OF BIPED MODEL

Meaning Unit Value
r0 natural leg length m 0.08
L position of the leg CoG m 0.16
Lb position of the torso CoG m 0.2
Mb mass of torso kg 4.11
m mass of leg kg 2.13
I inertia of torso kgm2 0.05
J inertia of leg kgm2 0.015
Kl leg spring stiffness N/m 3000

C. Stabilizing controller

In this section, we derive a controller similar to one-
legged model to find stable “unknown” running gaits. First,
we should overcome the instability caused by the torso
at the stance phase. Here we remove hip springs and
temporarily introduce simple pitch control:

τ1 = −K1pφ − K1dφ̇, (12)

where K1p ≥ 0 and K1d ≥ 0. The supporting leg is
assumed to be Leg1 indicated in Fig. 6.

For swinging leg (Leg2), we are also temporarily con-
trolling it by

τ2 = −K2p(ψ2 + ψ1) − K2d(ψ̇2 + ψ̇1). (13)

Under this controller, counter oscillation of each leg is
expected during running.

Next, we apply the controller of one-legged model to
the biped at the flight phase. To do so, decoupling control
and target dynamics are introduced. By new control inputs
u1 and u2, a part of the equations of motion is decoupled:[

ψ̈1

ψ̈2

]
=

[
u1

u2

]
(14)

This equation means we can control ψ̈ arbitrarily by new
control inputs u1 and u2.

Next, we define a target dynamics. Conservation law of
the angular momentum around CoG can be expressed as

J0φ̇ + J1ψ̇1 + J2ψ̇2 = P0, (15)

where Ji(i = 0, 1, 2) is nonlinear inertia terms and P0

means initial angular momentum of flight phase. If we
chose

ψ̇2 =
1
J2

(P0 − J0φ̇0 − J1ψ̇1) (16)

(φ̇0 is the initial value of φ̇ at flight phase), we get the
following target dynamics.

φ̇ = φ̇0 (17)

This means “another first integral of motion is created by a
feedback control”. The control input u2 can be calculated
by combining (16) and the original equations of motion.

The final task is to determine the control input u1. The
control objective is to dead-beat the absolute angle of the
swing leg θ1 and its velocity θ̇1 to some desired values
at given fixed time Tv (flight time). As we explained in
Section II, desired values are chosen to preserve energy at
touchdown. For the biped robot case, condition of energy
preservation is given by:

λ̂p = 0, (18)

where λ̂p is the constraint impulse imposed at touchdown,
which can be calculated explicitly.

For a given flight time Tv, however, there are many pairs
of θd and θ̇d, as in the case of one-legged model. To find
“unknown” periodic running gait, we set θd according to
(11). Since (14) is a trivial second order linear ODE, we
can easily dead-beat ψ1 and ψ̇1, by applying the same
controller as (6) to u1.
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Fig. 7. Stick animation of subsequent three steps of 1-periodic biped
running, corresponding to Fig. 8. The robot moves from left to the right.
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[rad] does not mean an instantaneous jump, but indicates the result of
high-gain PD-feedback about body pitch.

D. Simulation

Using the above controller, stable one-periodic running
gaits are investigated. Fig. 7 shows the stick animation of
2 m/s running and Fig. 8 depicts the corresponding phase
portraits. Stable running in different horizontal speed is
also obtained. Interestingly, dynamics about Leg2 (zero
dynamics of decoupling controller) is found to be sta-
ble. Actually, the motion of Leg2 indicates the counter
oscillation to Leg1. Although the running gait seems to
have symmetry, the motion of torso is slightly asymmetry,
as recognized from the right top graph of Fig. 8. This
asymmetry become more significant if the feedback gains
of (12) become smaller. Without attitude control, the robot
falls down after a few steps. Stabilization to (unknown)
period 2 gaits (p = 2) is also succeeded [19].

IV. QUADRUPED RUNNING ROBOT

In this section passive running of a planar quadruped
robot is presented. Gait searching becomes more compli-
cated than one-legged case and only the outline is shown.

A. Model

The model of a planar quadruped robot is shown in
Fig. 9. This is the extended model of Fig. 1. That is, it
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TABLE IV

PHYSICAL PARAMETERS OF QUADRUPED MODEL

Meaning Unit Value
r0 natural leg length m 0.5
L distance between the legs m 0.4 or 0.25 ∗

Mb mass of torso kg 20
m mass of leg kg 1 or 3 ∗
Jb inertia of torso kgm2 1.67
Jl inertia of leg kgm2 0.017 or 0.051 ∗
Kl leg spring stiffness N/m 8000
Kh hip spring stiffness Nm/rad 25

* L, m and Jl differ for each Profile A or B (Fig. 14).

has springy telescopic legs rotating around hip joint with
hip springs. All of the assumptions are the same as those
in the one-legged or the biped. The physical parameters
are summarized in Table Table IV.

The model can be completely described by 7 co-
ordinates, we define a generalized coordinate q =
[θ1 θ2 φ x y r1 r2]T and the state vector x̄ = [q q̇]T , where
(θ1, θ2) are the leg angles, φ is the pitch angle, (x, y) are
the Cartesian coordinates of the body’s CoG, and (r1, r2)
are the length of the fore and hind leg respectively.

Note that in planar quadruped model, each pair of fore
legs and hind legs moves together, and hence, only the
bounding gaits can be generated (gallop does not appear).
A complete bounding cycle is showed in Fig. 10. We can
see from the figure that each of these events initiates the
corresponding phase.

Related to the quadruped passive running, there is a
preceding study [21]. The main differences of our model
to their model are; consideration of mass of legs and hip
springs. As described in Section I, the important physical
phenomena that flowed from this consideration are: passive
swinging of the leg, the counter-oscillatory motion of the
body, and energy-loss due to the impact between the foot
and the ground.

The equation of motion is represented by the following
set of differential equations and algebraic equations:

• Continuous dynamics:

˙̄x = fi(x̄) (i = 1, · · · , 4) (19)
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Fig. 11. Gait searching algorithm for quadruped model

• Discrete dynamics:

x̄+ = Hj(x̄−) (j = 1, · · · , 4) (20)

Here, f1,2,3,4 the vector fields corresponds to each
phase Hind Leg Stance, Double Support, Fore Leg Stance,
Flight respectively. H1,2,3,4 corresponds to events Hind Leg
Touchdown, Fore Leg Touchdown, Hind Leg Lift-off, Fore
Leg Lift-off, respectively. The details of equations are given
in [20] and will be published elsewhere.

In continuous phase, the equation of motion can be rep-
resented by four different dynamical system, which takes
the form of autonomous system because we have no inputs.
Note that the DOF of each phase is different and they are all
bellow 7. Therefore, some of the variables in the vector x̄,
do not participate in the dynamic equations in some phases.
In this case, they become the dependent variables, and the
update of these variables should be calculated based on the
constraints subjects to the corresponding phases.

On the other hand, the equation of motion at transition
phase can be represented by four different algebraic equa-
tions. The transition models mainly contribute to describe
the behavior of the impact phenomena, which occurs when
the leg strikes the ground (the other is to describe “reset”
of the position at the end of one stride). This consider-
ation complicates the analysis greatly. However, they are
expected to be a more realistic system description.
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Fig. 12. Two different passive running gaits: the hind leg touches the
ground in Gait A, while the fore leg touchdowns first in Gait B.
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Fig. 13. Time trajectories of one stride of running: The graphs imply
the symmetry; φ(t1) = −φ(t2) = φ(t3), θ1(t1) = −θ1(t2) = θ1(t3)
and θ2(t1) = −θ2(t2) = θ2(t3)

B. Passive running gaits

Since the quadruped running is composed of multiple
phases, an advanced algorithm is implemented as shown
in Fig. 11, where no order of phase transition is presumed.
Depending on which event occurs, the integrator selects
the appropriate equations of motion, which correspond to
the phase triggered by that event according to Fig. 10. The
fixed point to be found is x∗ = [θ∗1 , θ

∗
2 , φ

∗, θ̇∗1 , θ̇
∗
2 , φ̇

∗, ṙ∗1 ] at
the cross section of poincaré map selected as the event of
Hind Leg Touchdown, or x∗ = [θ∗1 , θ

∗
2 , φ

∗, θ̇∗1 , θ̇
∗
2 , φ̇

∗, ṙ∗2 ]
at Fore Leg Touchdown. Although we do not assume any
specific order of phase transition, only the gaits which tend
to converge will exhibit a repetition of ordered phases.
Thanks to this algorithm, two typical gaits, Gait A and
Gait B, shown in Fig. 12(a) and Fig. 12(b) respectively, are
obtained. In Gait A, the Hind Leg Touchdown event occurs
first after Flight, while in Gait B, the Fore Leg Touchdown
event occurs first. From their analysis, the followings are
concluded.

First, different from other related studies, all the passive
running gaits we found are proved to be unstable. The
investigation of characteristic multipliers corresponding
to the periodic gaits revealed that their magnitude are
outside the unit circle. For example, Gait A is the pe-
riodic orbit with the fixed point x∗ = [0.1396, 0.1438,
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Fig. 14. Two different profiles

0.0084, −1.7619, −1.5909, 0.2482, −1.4232], whose
characteristic multiplier eig(DP )|x∗ is [7.1516, −0.7776,
−0.1961+0.3112i, −0.1961 − 0.3112i, 0.2130, 0.0567,
0.0018] and Gait B is the periodic orbit with the fixed
point x∗ = [0.2800, 0.2778, −0.1350, −0.9629, −2.5999,
−0.3145, −1.8308], where eig(DP )|x∗ is [−7.3902,
1.5585, −0.8970, −0.7272, −0.0019, −0.2030+ 0.0901i,
−0.2030−0.0901i]. Although the motion starting from the
fixed points can continue for some steps (8 and 25 steps as
maximum for Gait A and B respectively), it falls finally.

Secondly, our simulations reveal that both Gait A and
Gait B exhibit symmetric behavior. The time evolution
of angles shown in Fig. 13(a) or Fig. 13(b) implies such
symmetric properties: φ(t1) = −φ(t2) = φ(t3), θ1(t1) =
−θ1(t2) = θ1(t3) and θ2(t1) = −θ2(t2) = θ2(t3). This
property agrees with the result of [21].

Thirdly, thre is a strong profile dependency of passive
running gaits. Actually, Gait A and Gait B are generated
by two different profile (Table 9, Fig. 14). In our numerical
analysis, Profile A always converges to Gait A, and Profile
B always converges to Gait B.

V. CONCLUSION

We reported on passive running of planar one-legged,
biped, and quadruped robot. The robots are installed with
linear springs at the telescopic knee joints and torsional
springs at the hip joints. In this paper we addressed the
analysis of passive running gaits and their orbital stabiliza-
tion.

For a planar one-legged robot, passive running gaits were
found numerically. To this end, numerical search algorithm
was introduced. The analysis showed that the all passive
running gaits were unstable except for a trivial gait. Next,
orbital stabilizing controller was derived, based on energy-
preserving principle. Different from a local feedback con-
troller derived from the linearized Poincaré map, the new
controller demonstrated the best harmony with the passive
gaits. With this controller, interesting quasi-periodic orbits,
which can be seen in Hamiltonian system, were observed.
Moreover, with an additional adaptive scheme similar to
delayed feedback in chaotic system, orbitaly stabilization
to (unknown) passive running gaits were achieved and the
control inputs converged to zero.

For a planar biped robot attached with torso above hip
joint, we could not find any periodic passive solution.
Nevertheless, with a simple attitude controller at stance
phase and delayed feedback-like controller in flight phase,
“almost symmetric” stable 1-periodic running gaits were
generated.

For a planar quadruped robot, more advanced numerical
algorithm was developed. With this algorithm, two typical

different passive running gaits were found. Although the
results are premature, we found the following properties
of the passive running gaits: Firstly they were all unstable
except for trivial case, secondly they had symmetry, thirdly
they had a strong profile dependency.

Our ongoing task includes continual searching and anal-
ysis of passive running gaits for both of the biped and
the quadruped. The experiments with biped robot are also
performed in parallel.
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