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Analytical Time Optimal Control Solution for a Two-Link
Planar Acrobot with Initial Angular Momentum

Tsutomu Mita, Sang-Ho Hyon, and Taek-Kun Nam

Abstract—In order to control gymnastic and jumping robots, we will
derive the complete analytical solution to the posture control problem of
a two-link free flying object with initial angular momentum. We will show
that the solution involves singular control and derive formulas to calculate
the optimal switching condition, optimal terminal time and optimal trajec-
tories. As an application, a high diving motion is simulated.

Index Terms—Acrobat robot, initial angular momentum, nonholonomic
control, time optimal control.

I. INTRODUCTION

The purpose of this paper is to derive the analytical time optimal pos-
ture control law for free flying planar objects having nonzero angular
momentum. We plan to use it to build a parallel bar gymnastic robot
and running robot in the next stage of our research. The solution also
can be applied to the posture control problem of a two-link planar ma-
nipulator in the horizontal plane with a passive first link and an initial
angular velocity.

There is much research treating the control of free flying objects
with zero initial angular momentum, to name but a few, [1]–[6], where
at least three degree of freedom (dof) is required to guarantee control-
lability. Especially, Mukherjeeet al.[3] introduced the concept of geo-
metric phase to control a three link space robot.

However, the problems treating in this paper are a little bit different
from these since the motion of the free flying objects having nonzero
angular momentum is described by an affine nonlinear system with the
drift term having no equilibrium. Kamonet al. [7] formulated the pos-
ture control problem as a path planning problem and derived a min-
imum energy trajectory by numerical optimization method to simulate
a three–dimensional (3–D) somersault motion. Godhavnet al. [8] con-
verted the posture control problem to a bang-bang control problem and
proposed a potential numerical computation algorithm to show a som-
ersault motion of a planar diver. However, since these are numerical
solutions, we cannot obtain the closed form control formulas which
are needed for experiments. In addition, we cannot know the nature of
the optimal solutions, e.g., we cannot tell when a particular solution
becomes singular. Berkemeieret al. [9] dealt with a two-link hopping
robot and solved the posture control problem by controlling the twist
angle as a particular periodic time function.

The obtained time optimal solutions in this paper include simple
closed form formulas of the control law. They also show that the
problem leads to a singular optimal control problem depending upon
the initial posture; the switching time is once when the singular
solution does not occur while is twice when the singular solution is
used. As an application, the somersault motion of a diver approximated
by the two-link system is simulated.

Manuscript received June 19, 2000; revised November 27, 2000 and March 5,
2001. This paper was recommended for publication by Associate Editor H. Arai
and Editor S. Hutchinson upon evaluation of the reviewers’ comments.

The authors are with the Department of Control and Systems Engineering,
Tokyo Institute of Technology, Meguro-ku, Tokyo, 152-0033 Japan (e-mail:
mita@ctrl.titech.ac.jp; sangho@ctrl.titech.ac.jp;nam@ctrl.titech.ac.jp).

Publisher Item Identifier S 1042-296X(01)06736-2.

Fig. 1. Two-link free flying robot.

II. STATEMENT OF PROBLEMS AND CANONICAL FORM

Consider the posture control problem of a planar free flying robot as
shown in Fig. 1, where the robot is composed of the body and leg;� is
the absolute angle of the body measured counterclockwise relative to
the frame of inertia; is the relative angle between the body and leg
measured counterclockwise;L andl are the distances between the joint
and the centers of mass (CM) of the body and the leg, respectively;M

andJL are the weight of the body and the moment of inertia of the
body around its CM;m andJl are those for the leg.

Suppose that the robot has a nonzero constant angular momentumP0
which is provided from the ground before takeoff as an initial angular
momentum. Then the conservation law of angular momentum around
CM of the whole robot becomes [9]

P0 = (M1 + A1 cos ) _� + (M2 +A2 cos ) _ (1)

where

M1 =JL + Jl +
mM(L2 + l2)

m+M
; A1 = 2A2

M2 =Jl +
mMl2

m+M
; A2 =

mMlL

m+M
: (2)

In the sequel, we assume thatM1 > A1 andA2 6= 0. Then, under the
assumptionP0 6= 0, (1) cannot be integrated and becomes a nonholo-
nomic constraint. Note that whenP0 = 0, (1) turns to be an algebraic
equation and� and cannot be controlled independently. With a little
modification of the parameters, (1) also describes a two-link manipu-
lator in the horizontal plane with an unactuated first joint and initial
angular velocity.

Defining _ as a control, (1) can be described by

_ 
_�

=
0
P

M +A cos 

+
1

�M +A cos 

M +A cos 

u (3)

which is a nonlinear system with a drift term:

_q = f(q) + b(q)u: q = ( ; �)T (4)

having no equilibrium becausef(q) 6= 0 (8 q). Apparently, this system
satisfies the locally accessible condition [6].

Since the rotational motion of the robot cannot be stopped when
P0 6= 0, the control problem is to makeq passing through a given
reference stateqr = ( r; �r)

T at a given timeT . Only can be set-
tled at r by puttingu = 0 after arrival to the reference state.

Since the translated motion of the robot cannot be controlled at all,
we will not mention about it. Animals and gymnasts control their pos-
ture within the falling time.

If we can transform (3) to a system where the second entry ofb(q)
is zero, the corresponding state can be characterized as the state inde-
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Fig. 2. g(x ) and�g(x ) when = 0.

pendent ofu. This can be possible only for the two-link robot and an
immediate calculation derives the following canonical form:

_x1
_x2

=
0
P

M +A cos(x + )

+
1

0
u (5)

wherex = (x1; x2)
T is the new coordinate defined by

x1 =  �  r; x2 = � + w( )� (�r + w( r)) (6)

and [11]

w( ) =
 

0

M2 + A2 cos p

M1 + A1 cos p
dp

=
A2

A1
 +

2(M2A1 �M1A2)

A1 M2
1 �A

2
1

� tan�1
M1 � A1

M1 + A1
tan

 

2
: (7)

Then the control problem is transformed to drivex(0) to the origin 0
at the timeT . Since (5) yields

fM1 + A1 cos(x1 +  r)g _x2 = P0 (8)

andM1+A1 cos(x1+ r) is the moment of inertia around CM of the
whole robot,x2 can be interpreted as the rotational angle around the
CM of the whole robot.

Since the domain of is defined asR1 = (�1;1) for derivation
of the control law and computer simulations, the continuity of the func-
tion tan�1(� � tan( =2)) in (7) at = �n� becomes critical. To this
end, as introduced in [4], we propose to replacetan�1( ) in (7) by

k� + tan�1
M1 �A1

M1 +A1
tan

 � 2k�

2
(9)

depending upon

(2k� 1)� �  < (2k+ 1)�: (10)

As the result,w( ) becomes a single-valued function just the same as
g(x1) depicted in Fig. 2.

Let’s examine the nature of the canonical form (5) first by assuming
P0 > 0. Then, fromM1 > A1 andP0 > 0, we can see thatx2(t)
cannot move in the negative direction and the accessible region to the
origin must satisfies

x2(0) < 0: (11)

Actually, this is shown to be sufficient below, whenP0 < 0, (11) is
replaced byx2(0) > 0.

III. A NALYTICAL SOLUTION OF THE TIME OPTIMAL CONTROL

PROBLEM

A. Optimal Control Problem and Solutions

We will solve the time optimal control problem for (5) and investi-
gate the optimal trajectories. First of all, we define

p(x1) :=
P0

M1 +A1 cos(x1 +  r)
(12)

in (5). The control problem is to minimize

J =
T

0

dt = T (13)

while bringingx(0) to x(T ) = 0 under the constraintjuj � um.
The Hamiltonian of this problem is

H =1 + �T
0

p(x1)
+

1

0
u

=1 + �1u+ �2p(x1) (14)

and the principle of optimality yields the following necessary condi-
tions

u =� sgn(�1)um (15)

_� =�
@H

@x
=

� @p(x )
@x

�2
0

(16)

H(t) =1 + �1u+ �2p(x1) = 0 (8 t): (17)

Note that the bang-bang control law (15) holds only when the problem
is regular, i.e.,�1 is not identically zero for some time interval [10].
When it becomes singular, only (16) and (17) hold.

Since _�2 = 0 in (16) yields�2 = constant:= ��, the regular
problem reduces to find�1(0) and� satisfyingx(T ) = 0 under the
conditions:

_x1 =� sgn(�1)um (18)

_x2 =p(x1) (19)

_�1 =�
@p(x1)

@x1
(20)

H =1 + �1u� �p(x1) = 0 (8 t): (21)

However, this problem can be solved analytically without seeking
�1(0) and� explicitly if we pay attention to the two integral manifolds
made byu = �um.

Examine the caseu = um (�1 < 0) first. In this case, it follows from
_x1 = um thatx1 increases monotonically. Besides, using_x2= _x1 =
dx2=dx1 = p(x1)=um, x2 satisfies the following manifold

x2 =
g(x1)

um
+ C1; (22)

whereg1(x1) is described by

g(x1) =
x

0

p(y)dy

=
2P0

M2
1 �A2

1

tan�1
M1 � A1

M1 + A1
tan

x1 +  r
2

(23)

provided all constants are collected to make one integral constantC1.
When calculating tan�1(:), we will use (9) and (10).

Similarly, whenu = �um(�1 > 0), we have another manifold

x2 =
�g(x1)

um
+ C2: (24)
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Fig. 3. Switching line I, II, and optimal trajectories.

The integral constantsC1 andC2 must be adjusted for (22) and (24)
to pass through designated states.

We will treat the case r = 0 to save the length of the paper, then
g(x1) is given by a single-valued function passing through the origin as
depicted in Fig. 2. Furthermore, as shown in Fig. 3, (22) and (24) draw
a bunch of curves rising in the right-hand side (RHS) and left-hand side
(LHS) directions, respectively, when the integral constantsC1 andC2

vary. We’ll refer to the two manifolds, denoted by I and II in Fig. 3,
passing through the origin as theswitching linehereafter. From Fig. 3,
we can see that we can find a controlled trajectory only whenx2(0) ex-
ists in the region under the switching line I and II (the region is marked
by slashes). The control strategy is as follows. As is in Case A, when
x1(0) > 0, we first chooseu = um to ride the state on the manifold
rising in the RHS direction, then switch the control tou = �um when
the state reaches the switching line I. Similarly, as is in Case B, when
x1(0) < 0, we first chooseu = �um, followed byu = um when the
state reaches the switching line II. Whenx1 = 0, we can choose either
controls in Case A or Case B,x1 = 0 gives the boundary between Case
A and Case B.

Note that we have infinitely number of choices of the control se-
quences if we don’t care about the optimality. However, the final choice
must be riding the state on the switching line I or II in the fourth quad-
rant or third quadrant, respectively.

In Section IV, we will prove the following theorem.
Theorem 1:

1) when�� < x1(t) < �, the mentioned control strategy is op-
timal;

2) whenx1(t) = �� or x1(t) = � happens, which corresponds
to  = ��, the control problem becomes singular, and, as is
shown in Fig. 4, the optimal control is given byu = 0 before
riding the state on the switching lines I or II;

3) when r 6= 0, the boundary of Case A and Case B is given by
x1 = �2 r as shown in Fig. 5.

From this theorem, we can see that the control strategy explained in
Fig. 3 is optimal only whenx(0) is located inside the area enclosed by
the bold face curves depicted in Figs. 4 and 5. We call this area abasic
region.

Note also that the robot rotates by the fastest angular velocity with
holding the leg upon the body to minimize the moment of inertia of the
robot in the singular period because becomes��.

Before concluding this section, let’s examine the role ofum and ac-
cessible region. Whenum is chosen bigger, it follows from (22) and
(24) that the lines I and II becomes flat and close tox1 line. There-
fore, the region ofx2(0)which can be brought to the origin approaches

Fig. 4. Optimal trajectories when = 0.

Fig. 5. Optimal trajectories when 6= 0.

x2 < 0. Since (11) has been shown to be necessary before, (11) is the
necessary and sufficient condition of the initial state which can access
the origin by the control.

However, in the physical world,x2 is counted by mod2�. Therefore,
even whenx2(0) > 0, predetermining an integerk satisfying�x2 =
x2 � 2k� < 0 and treating(x1(0); �x2(0)) as a new initial state will
get around the limitation (11) at the expense of more time to reach the
origin. We have to introduce a similar shift tox1 to express it in the
interval�� � �.

B. Optimal Switching Conditions

We will derive the switching condition as well as the optimal
switching time whenx(0) lies in the basic region by making use of
Fig. 3. This will be used for practical implementation of the control
law.

Whenu = �um, _x1 = �um yields the solution

x1(t) = �umt+ x1(0) (25)

which shows that (the change ofx1=um) gives the transition time when
u = �um. This fact will be used frequently without mentioning.

Now let us define the switching time and the terminal time of the
trajectory in Case A byt1 andTA, then

x1(t1) =umt1 + x1(0)

x1(TA) =� um(TA � t1) + x1(t1) (26)
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(a) (b)

Fig. 6. Simulation results (a)x coordinate (b)q coordinate.

hold and from the conditionx1(TA) = 0, we have

TA = 2t1 +
x1(0)

um
=

2x1(t1)� x1(0)

um
: (27)

On the other hand, sincex(0) lies on the manifold (22) and the
switching line I passes through the origin, we have

C1 = x2(0)�
g(x1(0))

um
; C2 =

g(0)

um
; (28)

respectively. Furthermore, sincex(t1) lies on the both of the manifolds

x2(t1) =
g(x1(t1))

um
+ x2(0)�

g(x1(0))

um

x2(t1) =�
g(x1(t1))

um
+
g(0)

um
(29)

hold. Therefore, solving (29) to obtain

g(x1(t1)) =�
um
2
x2(0) +

g(x1(0))

2
+
g(0)

2
(30)

x2(t1) =
x2(0)

2
�

g(x1(0))

2um
+
g(0)

2um
: (31)

Using the fact thatg(x1) is a single-valued function, solving (30) gives
x1(t1) and (27) providesTA.

Moreover, the first equation in (26) gives the following switching
time

t1 =
x1(t1)� x1(0)

um
: (32)

Similarly, in the Case B, if the switching time and terminal time are
defined byt2 andTB , from

x1(t2) =� umt2 + x1(0)

x1(TB) =um(TB � t2) + x1(t2) = 0 (33)

we will obtain

TB =
�2x1(t2) + x1(0)

um
(34)

and

g(x1(t2)) =
um
2
x2(0) +

g(x1(0))

2
+
g(0)

2
(35)

x2(t2) =
x2(0)

2
+
g(x1(0))

2um
�

g(0)

2um
: (36)

Therefore, we can calculatex1(t2) from (35). Then, (34) leads toTB .
Thet2 can be derived from the first equation of (33) as

t2 =
�x1(t2) + x1(0)

um
: (37)

In the practical implementation of the control law, making use of
x2(t1) andx2(t2) as the switching conditions may be more robust than
usingt1 andt2.

As for the singular control period, it follows fromx1 = ��, u = 0
and (19) that we have

_x2 =
P0

M1 � A1

:= K: (38)

Therefore, the transition time in the singular period is given by the di-
vision of the change ofx2 byK. Furthermore, even Fig. 3 corresponds
to the case r = 0, the above derivation is independent of r and we
can apply all the results, from (25)–(38), to the case r 6= 0.

Example: We will simulate the motion of a planar diver approxi-
mated by two links with the parameters

M =30 (kg); L = 0:75 (m); JL = 5:0 (kg � m2)

m =25 (kg); l = 0:8 (m); Jt = 4:5 (kg � m2)

P0 =170
kg � m2

s
; um = 5

1

s

whenq0 = (0; �=2)T andqr = (0; 7�=2)T , which correspond to
x(0) = (0;�3�), the optimal control law provides the switching con-
ditionsx1(t2) = �2:9694, x2(t2) = �4:7124 andt2 = 0:5939 (s)
(corresponding to Case B) and the terminal timeT = 1:1878 (s). In this
case, the robot performs one and half somersault. The time responses
in terms ofx andq are depicted in Fig. 6(a) and (b), respectively, while
Fig. 7 shows the animation. The translated motions have been simu-
lated under the conditionsVX = 1:5 (m/s) andVY = 1:8 (m/s), where
VX andVY are initial speeds of the CM of the whole robots.

In this problem setting, the minimum time control tells how long
does it take at least to complete a specified motion within a given input
magnitudeum.

Remark 1: In the case where a real robot cannot bend the leg��=2,
the following method may be applied if we do not care about the opti-
mality much. Draw the singular line on = ��a (a > 0) instead of
 = �. Whenx1 comes across this new line, keepu = 0 until the state
rides on the switching line I followed byu = �um. The maximum ve-
locity um of the joint depends on the requested acrobatic performance,
P0 and the falling time. Some compromise will be required in the ex-
periment.



IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 17, NO. 3, JUNE 2001 365

Fig. 7. The animation.

IV. PROOF OFTHEOREM 1

A. Proof of the Item 1 and Item 2

We will prove the item 1 and item 2 in Theorem 1.
To this end, we will analyze the response of�1 and (21).
Let’s consider the case where�1 is not identically zero, first.
If �1 < 0, (18) leads tou = um and it follows from _x1 = um !

dt = dx1=um thatx1 increases with the time and we can integrate
(20) as

�1 =�
t dp(x1)

dx1
dt =

�

um

x (t)

dp(x1)

=
�

um
p(x1(t)) +K1: (39)

Substituting this into (21) yields

1 + um
�

um
p(x1) +K1 � �p(x1) = 0 (40)

from whichK1 = �1=um is obtained. Therefore,�1(t) is expressed
by

�1(t) = �
1� �p(x1(t))

um
(41)

as a function ofx1(t).
Similarly, when�1 > 0, u = �um leads to thatx1 decreases with

the time and we can conclude

�1(t) =
1� �p(x1(t))

um
: (42)

It follows from the continuity of�1(t) that (41) must intersect (42).
Since the two�1 ’s are the same except for their signs, they inter-
sect only on thex1 axis as shown in Fig. 8(a). Therefore, the input
is switched at these intersection points. Let us denote one of the inter-
section point byx1 = x1s (x1s corresponds tox1(t1) or x1(t2) in the
previous chapter). Equating two�1 ’s at these points, we have

p(x1s) =
1

�
(43)

where�may be determined by the initial condition. It will be seen from
Fig. 8(a) thatx1s must satisfyjx1sj � � and only one switching instant
is allowed beforex1 arrive at 0 fromx1(0). The reason is as follows.

(a)

(b) (c)

Fig. 8. Function� versusx (a)x 6= �� (ordinary solution). (b)x =

�� (singular solution). (c)x = 0 (trivial solution).

If x1 would move acrossx1s, it should move to the next intersection
point which increases the travelling time tox1 = 0. Therefore

jx1(t)j � jx1sj � � (44)

must hold.
Next, suppose that�1 becomes identically zero for some finite time

interval. In this case, sinceH is independent of�1, u cannot be de-
termined from (15) and the problem becomes singular [10]. However,
from Fig. 8(a), if there exists such a�1, it should be at the intersection
point such that�1(t) = 0 andx1(t) = x1s hold for some period.

Besides, in the singular period, the derivatives of�1(t) of any order
must be zero. Its first and second derivatives are given by

_�1 = �
dp(x1)

dx1
; ��1 = �

d2p(x1)

dx21
_x1 (45)

where

dp(x1)

dx1
=

P0A1 sinx1
(M1 + A1 cosx1)2

: (46)

Therefore, the following conditions

x1 =x1s = ��; and _x1 = u = 0

x1 =x1s = 0; and _x1 = u = 0 (47)

make them zero and the converse also holds. It is direct to check that
�
(i)
1 (t) (8i � 3) = 0 hold under (47). In addition, when�1(t) = 0,

Hamiltonian (21) becomes

H = 1� �p(x1) (48)

which is ensured to be zero under the conditions (43) and (47). There-
fore (43) and (47) are the necessary conditions for singular control.
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Let us consider the casex1 = x1s = �� andu = 0. This corre-
sponds to the�1 depicted in Fig. 8(b), where the robot rotates by the
fastest speed as stated before.

Then consider the casex1 = x1s = 0 andu = 0 which corre-
sponds to the�1 shown in Fig. 8(c). It will be a singular solution only
if x2(0) = 0 because, whenx2(0) < 0, u = 0 leads to a trajectory
keepingx1 = 0 before the convergence which contradicts the optimal
trajectory in the basic region shown in Fig. 3. However, the solution
x1 = x2 = 0 andu = 0 is trivial and we cannot count this as a sin-
gular solution since itself is on the reference state.

Therefore, the following conclusions are obtained. Whenx(0) 6=
0 and jx1j < �, the singular solution does not occur and one time
switching is optimal; when the state comes acrossjx1j = �, u = 0
gives the singular control and the optimal trajectory is produced by two
time switchings as shown in Fig. 4, since the continuity of the trajectory
must hold.

B. Proof of the Item 3

We will prove thatx1(0) = �2 r rendersTA = TB when r 6= 0.
Since Fig. 3 can be applied even to the case r 6= 0 as mentioned at the
end of Section III, it follows (27) and (34) thatTA = TB holds only if

x1(t1) + x1(t2) = x1(0) (49)

wherex1(t1) andx1(t2) will be provided by solving (30)–(35). Thus,
the problem is to show that (49) holds whenx(0) = �2 r.

An addition of (30) to (35) gives

g(x1(t2)) + g(x1(t1)) = g(x1(0)) + g(0): (50)

To make description simpler, we denoteg(x) = g0(x+ r), theng0(x)
becomes an oddly symmetrical function passing through the origin as
we may imagine in Fig. 2.

Whenx1(0) = �2 r , it follows from

g(x1(0)) =g(�2 r) = g0(� r) = �g0( r)

g(0) =g0( r) (51)

that the RHS of the first equation in (50) is zero, and (50) can be
rewritten as

g0[x1(t1) +  r] = �g0[x1(t2) +  r] (52)

usingg0. However, sinceg0(x1) is an oddly symmetrical single-valued
function, (52) is satisfied only if

x1(t1) +  r = �(x1(t2) +  r): (53)

This becomes (49) whenx1(0) = �2 r .
In [12], we have even proven thatTA < TB holds when�2 r <

x1(0) < � �  r .

V. CONCLUSION

We have derived an analytical solution to the minimum time optimal
control problem of a two-link flying robot having nonzero angular mo-
mentum. For the posture control of generaln link robots, we can apply
obtained results after fixingn � 2 joint angles. The optimality is not
guaranteed in this methodology. We are now constructing a parallel bar
gymnastic robot which can perform a somersault.
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