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Abstract: This paper proposes novel walking gait generation for a double-pendulum-like biped
walking model based on the family of the symmetric orbits. By introducing an involution R
associated with the leg switching map, the flow of the saddle-center dynamics of the uncontrolled
pendulum possesses time-reversal symmetry with respect to R, and the conjunction of the flow
and R forms a family of symmetric orbits parameterized by the orbital energy and the stride. The
invariant manifold of the family of symmetric orbits is obtained numerically or approximately
using a perturbation method. The proposed methods are evaluated on numerical simulations.
By constraining the solution onto the invariant manifold using the control inputs, stable walking
gaits are generated in a semi-global manner in simulations. Based on the passivity of the closed-
loop system, a robust speed-controlled walking is achieved in a very simple way.
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1. INTRODUCTION
The goal of this paper is to generate robust and energy-
efficient locomotion gaits that achieve simple targets such
as a specified walking speed or desired locations. For
that purpose, we propose a novel motion control strategy
based on the useful properties of Hamiltonian systems.
As outlined in Hyon (2005), the strategy comprises three
steps:

S1. First disregard dissipativity of the system to extract
purely Hamiltonian (conservative) dynamics. Then,
apply an invariance controller that renders the closed-
loop system lossless and restricts the hybrid solutions
into invariant sets.

S2. Retrieve (and inject as necessary) dissipativity and
apply tracking controllers to stabilize asymptotically
target states or periodic orbits passing through them.

S3. Apply adaptive or learning schemes to minimize con-
trol efforts.

Roughly speaking, S1 is introduced to make biped robot
behave as a ball rolling on the ground, by way of feedback
control. The resultant controller has a hierarchical struc-
ture in which the existence, stability, and boundedness
of the solution are ensured by the lowest layer with a
high priority; more advanced control goals are achieved
at higher layers.

In this paper, we treat a double-pendulum biped model
and propose the semi-global 1 locomotion generation.

1 The “semi-global” means we consider stability at once. Since
configuration space is limited in biped locomotion (foot cannot
penetrate the ground), the stability is naturally limited to semi-
global.

Specifically, we utilize the symmetric orbit inherent in the
uncontrolled system. The symmetric orbits (see Sevryuk
(1986) or Lamb (1998)) are special orbits in (time-) rever-
sal systems such as Hamiltonian systems. They exist as a
family parameterized by the initial conditions such as the
Energy level (imagine flows around the center of a simple
pendulum dynamics), and form an invariant manifold in
the phase space.

Symmetric orbits are not necessarily periodic. However, if
we allow switching between phase variables, they, together
with the switching map, can form some meaningful hybrid
periodic orbits on an invariant manifold. Consequently, by
constraining the solution curves to the invariant manifold
using control inputs, (semi-) global orbit generation would
be possible within the admissible region. In this case,
external forces just change the internal energy of the
system, which results in robust gait generation. This is
the motivating idea of this study.

The idea of constraining the solution to some parameter-
ized family of orbits is not itself new in locomotion litera-
tures. For example, Wieber (2006) proposed to use whole
walking trajectories computed off-line, and to select one
of them online. Although not mentioned about symmetric
orbits, Morita (2004) proposed a ballistic walking based on
the symmetry. Hyon (2005) also studied symmetric orbits
parameterized by the step length and angular momentum,
by using numerical method based on Poincaré map. In
Hyon (2005), however, the authors had no idea how to rep-
resent and store the obtained infinitely many symmetric
orbits. Therefore, the authors picked up a simplest target
manifold (q1 + q2 = 0) and constrained the solution to
the manifold by control inputs. Although the controller



was almost same as the past-proposed one Grizzle (2001),
we believe Hyon (2005) is the first paper that addressed
its (semi-) global stability of the symmetric orbits on the
manifold, from a global dynamics point of view. The idea
was also validated on a real biped walking robot. Once
obtained the global stability, it was easy to obtain global
asymptotically stable periodic gaits, by using a very simple
feedback controller 2 .

This paper extends our previous work toward globally
optimal walking gait generation by the following two
novel approaches. First, we compute approximate, but
analytical invariant manifold in which symmetric orbits
are filled in. We do this because, once the invariant
manifold has been obtained analytically, it is easy to
apply model-based controllers to constrain the solution
onto the manifold. Actually, in this paper, we employ
two kinds of continuous feedback controllers. One is a
simple trajectory tracking controller, and the other is
a velocity-field tracking controller in Duindam (2004),
resulting in the second contribution of this paper. The
effectiveness of the proposed methods are evaluated on
numerical simulations.

This paper is organized as follows. In Section 2 we in-
troduce the reversal symmetry and symmetric orbits of
Hamiltonian systems and explain the close link to the peri-
odic orbits which we are interested in. In Section 3, we clar-
ify the relationship between biped walking and symmetric
orbits, by introducing a double-pendulum (compass-like)
biped model. We obtain the symmetric orbits numerically,
and explain their properties. In Section 4 we approxi-
mately compute the invariant manifold of the symmetric
orbits. In Section 5, we propose a sub-optimal gait gen-
eration based on the symmetric orbits and its invariant
manifold. In particular, we show the application of the
method by Duindam (2004), which maintains the energy
constant, while tracking to some given tangent vector
field. In Section 6, we examine how the proposed method
is applicable to realistic walking model with dissipation
through simulations, then demonstrate that a very simple
passivity-based speed controller can make the robot walk
stably at arbitrary speed. Section 7 summarizes the paper.

2. REVERSAL SYMMETRY AND SYMMETRIC
ORBITS IN HAMILTONIAN DYNAMICAL SYSTEMS

Hamiltonian systems have a special symmetry, called
(time-) reversal symmetry Devaney (1976)Lamb (1998).
Let F : M → M be a diffeomorphism on a manifold M,
and a map (called involution) R : M → M such that
R ◦ R =id (identity). If

R ◦ F = F−1 ◦ R (1)

is satisfied, we say F has reversal symmetry with respect
to R Lamb (1998) (or simply say F is R-symmetric).

Let us consider a Hamiltonian system with the Hamilto-
nian

H0(q, p) =
1
2
pT M(q)−1p + U0(q). (2)

2 Experiments and simulation movies are available from
http://www.cns.atr.jp/ sangho/

Its flow is represented by φt : (q(t0), p(t0)) �→ (q(t0 + t), p(t0 + t)).
Then, φt is R-symmetric since H0 is invariant with respect
to a map R : (q, p) �→ (q,−p). That is, we have

R ◦ φt = φ−t ◦ R. (3)

The fixed point sets, Fix(R) and Fix(R◦φt), are especially
important because a family of orbits, called symmetric
orbits, pass through these sets and are mapped onto
themselves by R with their direction of flow reversed.
Therefore, if we have a R-symmetric flow φt, and if its
fixed point sets Fix(R) and Fix(R ◦ φt) are identified, we
obtain the associated symmetric orbits. The symmetric
orbits exist as a family, which is parameterized by initial
condition such as initial energy.

The symmetric orbits are not necessarily periodic orbits.
However, if they are closed orbits, they pass Fix(R) ex-
actly twice Devaney (1976). Such symmetric orbit we call
symmetric periodic orbit. The Reversible Lyapnov Center
Theorem is related to the existence of the symmetric peri-
odic orbits. See Devaney (1976) or Sevryuk (1986).

However, note that a compass-like walking system shown
in Section 3.1 has no double center equilibrium because the
center equilibrium is out of the admissible configuration
space. Instead, it has a saddle-center (a pair of saddle
and center) as the meaningful equilibrium. Therefore, a
double-pendulum has no meaningful symmetric periodic
orbits in nature. However, if we allow us to have a hybrid
dynamical system framework, where the continuous states
and discontinuous states coexist, hybrid symmetric orbits
can be newly defined, and they play a central role in global
generation of periodic orbits. As we will see in Section 3.2,
this scenario is actually possible if R represents a leg-
interchanging map.

3. SYMMETRIC ORBITS OF BIPED WALKING
MODEL

3.1 Model description

Let us consider a walking model shown in Fig. 1. This is
often called “compass model”, and is a double pendulum
as long as its foot sticks to the ground all the way,
which we assume in this paper. We take the angles of
the swinging leg and supporting leg as the generalized
coordinates, q = (q1, q2), on the admissible configuration
space N := {q ∈ S2

∣∣ |q1| ≤ π/2}. The conjugate
momentum is p = M(q)q̇ ∈ M = T ∗N , where

M(q) =[
(m1 + 2m2)L2 + m2(L − b)2 −m2bL cos(q1 − q2)

−m2bL cos(q1 − q2) m2b2

]
is the inertia matrix. The potential energy is given by

U0(q) = (m1 + 2m2)gL cos q1 − m2gb(cos q1 + cos q2)
with g being the gravity acceleration. Then, the dynamics
of the double pendulum is 2-DOF Hamiltonian system

q̇ =
∂H0(q, p)

∂p

T

ṗ = −∂H0(q, p)
∂q

T

+ B

(
u − D

∂H0(q, p)
∂p

T
) (4)
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Fig. 1. A simple biped robot with the mass-less foot: q1

and q2 are the absolute angle of the supporting leg
and swinging leg respectively.
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Fig. 2. Gait transition of symmetric walking. The map F is
defined in (6). A family of steady symmetric walking
gaits is the fixed point set of R ◦ F .

with the Hamiltonian (2), where D = is a friction coeffi-
cient matrix (diagonal), u = [u1, u2]T ∈ R

2 is the control
input vector, and B =

[
1 −1

0 1

]
is a driving matrix which

converts u to the generalized input associated with q. The
equilibrium (origin) is a saddle-center, and the eigenvalues
are {λ,−λ, iω,−iω} with real numbers λ, ω.

3.2 Numerical search of symmetric orbits

The model in the previous section represents the dynamics
of the single support phase. When the swinging leg lands
on the ground, the energy is lost and sudden change of the
velocity occurs. Energy will be lost due to the joint friction
too. Along with the strategy (S1) in Section 1, however,
we ignore the dissipation tentatively (we get back to this
point in Section 6), and try to derive a gait generating
controller by focusing on the pure Hamiltonian systems.

For this purpose, let us consider a R-symmetric flow φt of
the free system; (4) with D = 0, u = 0. Herein, we are
interested in the mirror map about p-axis:

R : (q1, q2, p1, p2) �→ (−q1,−q2, p1, p2), (5)

rather than the conventional involution R : (q, p) �→
(q,−p). As can be seen in Fig. 2, for some symmetric
walking gaits which start q1(0) = −q2(0) = −qr at
t = 0 (qr is some positive number representing the
stride) and terminate at q1(T ) = −q2(T ) = qr at time
t = T , the involution (5) corresponds to the ideal leg-

interchanging map 3 , (q1, q2, p1, p2) �→ (q2, q1, p1, p2), in
which the impulsive effect is completely ignored. Such
orbits are R-symmetric orbits which pass the origin of the
configuration space (included in the Fix(R)). Therefore,
it is easy to see we can obtain (ideal) symmetric walking
gaits by conjunction of R and R-symmetric flow φt. For
this construction making sense, we need to consider flows

F := φt

∣∣
t=T

, (6)

not arbitrary ones. Wherein, T > 0 is the time which one
cycle of walking finishes (at the end q1 + q2 = 0 is met).
Therefore, the problem of finding symmetric walking gaits
is to find the fixed point set Fix(R ◦ F ).

The top graph of Fig. 3(a) shows the numerically found
symmetric orbits (Hyon (2004)) associated with the fixed
points of Poincaré maps (Guckenheimer (1983)) with dis-
crete jump (Kousaka (1999)). The robot parameters are
{m1 = 2,m2 = 1.2, b = 0.2, L = 0.4}. The stride is
fixed to qr = 0.5 here, but similar results can be obtained
for other values. Fig. 3(b) shows the bifurcation diagram
of the eigenvalues of the linearized Poincaré map DP at
Fix(R◦F ), where the bifurcation parameter is the momen-
tum p1. As intuitively expected, the (hybrid) symmetric
periodic orbits for uncontrolled system without dissipation
are found to be neutrally stable or unstable (see Hyon
(2005)). 4

Some notes are in order:

• The orbits approach a straight line q1 + q2 = 0 as the
energy increases and q̇2 becomes negatively large. In
this case, the walking speed is high, but, in reality,
is limited by unilateral constraint and friction cone,
which we ignore in this paper for simplicity.

• If the energy is high and q̇2 is positively large, the
orbit is curved to the q2-direction. A particular orbit
passes the singular point q1 = 0, q2 = π. Interestingly,
this “giant swing” orbit is free from the impulse at
touchdown (lies in the null space of the impulse map).
Of course, this is not a walking gait.

• In regions |q1| ≥ π/2 and |q2| < |q1|, walking is
indefinable.

Although the region is limited, the symmetric walking
gaits fill a certain area of the configuration space. In
the 4-dimensional phase space, they form a 3-dimensional
invariant manifold.

The global gait generation developed in this paper is
achived by constraining all the solutions to this invariant
manifold using control inputs. Once the solutions are con-
strained on the manifold, the control inputs also converge
to zero (in ideal lossless system).

4. APPROXIMATION OF INVARIANT MANIFOLD
OF SYMMETRIC ORBITS

Let us approximate the invariant manifold. We assume the
family of symmetric orbits can be approximated by

3 We need this map when we define the coordinate as the angles for
supporting leg and swinging leg, not those for right leg and left leg
4 Asymptotical stability is impossible in Hamiltonian system in
nature. See Guckenheimer (1983).
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Fig. 3. Numerical computation of the family of symmetric
orbits for the simple biped model with the parameters:
{m1 = 2,m2 = 1.2, b = 0.2, L = 0.4} and { q∗1 = −0.5,
−10 ≤ p∗1 ≤ 0}

η2 = A sin(ωη1) (7)

via a transformation Y : (q1, q2) → (η1, η2), where ω = π
ηr

and ηr = (1+γ)qr. This shows curves passing three points
(η1, η2) = (0, 0), (0,±ηr). This assumption is obtained
from the numerical results in the previous section. We
apply perturbation method up to terms of necessary order.
As the transformation Y we use

[
η1

η2

]
=
[

γ −1
1 1

] [
q1

q2

]
. (8)

By setting a limit A > 0, the symmetric orbits meet |q2| <
|q1| in region |q1| < qr. The orbits Fig. 3(a) is transformed
to Fig. 3(b) in the new coordinate (η1, η2). It should be
noted that the controlled symmetric orbit in Hyon (2005)
is a single orbit η2 = q1 + q2 = 0, which corresponds to
“scuffing gait”. Contrary, (7) meets η2 = q1 + q2 = 0
only at the origin or the leg interchanging configuration
q1 = −q2 = ±qr, as long as A �= 0. The uncontrolled
system does not have any solutions with A = 0 (i.e.
η2 = q1+q2 = 0 is met uniformly). The amplitude A codes
the energy level, and is uniquely determined if q̇1(0) or
q̇2(0) are given together with the stride and initial energy.

Now, we compute the velocity field v(η) = [v1(η1), v2(η1)]T
tangent to the invariant manifold. From reversal symmetry
this meets v(−η1) = v(η1). We take a similar procedure
for computing center manifold (Guckenheimer (1983))
up to terms of necessary order. The invariant manifold
is represented by a power series parameterized by the
velocity v10 = v1|η1=0 (alternatively, the energy and
direction) at which the curves pass q1 = −q2 = q0 and
q1 = −q2 = qr.

We first expand (7) to yield

η2 = b1η1 + b3η
3
1 + . . . (9)

Then, its tangent vector is represented by

v1 = c0 + c2η
2
1 + c4η

4
1 + . . . (10)

v2 = d0 + d2η
2
1 + d4η

4
1 + . . . (11)

where c0 = v10. By differentiation, we have

v̇1 = (2c2η1 + 4c4eta
3
1 + . . . )(c0 + c2η

2
1 + . . . ) (12)

v̇2 = (2d2η1 + 4d4eta
3
1 + . . . )(d0 + d2η

2
1 + . . . ) (13)

Then, these equations are substituted into the dynam-
ics, then solved for the coefficients {bi, ci, di} using the
terminal conditions η2(ηr) = η2(−ηr) = 0. From this
procedure we approximately obtain the vector field v(η) =
[v1(η1), v2(η1)]T . We used Maple for the symbolic compu-
tation.

5. CONSTRAINT CONTROL TO THE INVARIANT
MANIFOLD

We generate semi-globally stable walking gaits by con-
straining the integral curves to the approximated invariant
manifold (4). If the approximation is precise enough, it is
expected that the resultant closed-loop solutions maintain
the energy level, and that the control inputs become close
to zero. The resultant walking gaits would be optimal with
respect to the criteria

J =
1
2

∫ T

0

‖u‖2dt (14)

for given stride. However, the gaits would not be optimal if
we consider the energy dissipation due to the touchdown.

Here we will show simulation results by using two kinds
of controllers. The one is a simple trajectory tracking
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Fig. 4. Controlled optimal and non-optimal symmetric
walking gaits. (Left): Starting from a numerically-
obtained fixed point. (Right): With the same initial
conditions except for q̇2(0), which is manually per-
turbed. Note that the control input in the left figure
is small, but not zero due to the approximation error
of the invariant manifold.

controller in the under-actuated case (Section 5.1), where
we don’t use the tangent vectors but use only the tra-
jectories in configuration space. The velocity is uniquely
determined from the available energy of the system. The
other controller utilizes the tangent velocity field, instead
of using the trajectory itself (Section 5.2). If the initial
conditions are the same, and the precision is good, the
both results will be identical.

5.1 Trajectory tracking for under-actuated case

Let suppose the ankle torque is unavailable, u1 = 0, but
only the hip torque u2 is available. The controller is simple
as follows. First, we select a symmetric orbit represented
by (7). Then, we compute the tangent vector by

v2(η1) = −Aω cos(ωη1)η̇1. (15)
Then, we transform (7) and (15) to the target trajectory
qd, q̇d by the inverse of (8). Finally, we apply a feedback
controller

u2 = −K1(q2 − q2d) − K2(q̇2 − q̇2d), (16)
where K1,K2 are tracking gains. In this setting, the
approximation error will appear in u2.

Fig. 4 is the simulation result with qr = 0.2, where two
different gaits are shown. The left graph shows the result
with the initial conditions q̇1(0) = 1.7086, q̇2(0) = 3.4944,
which are picked up from the numerical solution. The right

graph shows the result with q̇2(0) = 5 and A computed
from

A = − 1
ω

v10 + v20

γv10 − v20
. (17)

In both case, the orbits are R-symmetric, and have sym-
metry about the walking direction. They always pass the
origin and do not fall. But only the former one lies on
the approximated invariant manifold, not the latter one
(it is not uncontrolled symmetric orbit). The energetic
performance is clearly different. We can see, however, that
a bit control effort is still required even for the former case,
due to the approximation error.

5.2 Full-actuated maneuver on tangent vector field of
invariant manifold

If the robot is not under-actuated, we have additional
DOF for any other control purpose than the trajectory
tracking. Here we adopt a velocity field tracking control
proposed by Duindam (2004). By using this method, we
can maintain the kinetic energy constant while making
the solution follow the desired velocity field. We use this
because it satisfies our purpose of utilizing an important
property of Hamiltonian systems – energy preservation.
If we give the well-approximated tangent vector of the
invariant manifold as the target velocity field, the closed-
loop solutions of this controller maintain the energy level,
and the control inputs converge to zero. In other words,
the solution evolves along the geodesic flow (see Mars-
den (1999)) of the original uncontrolled system, without
falling.

Let v(q) ∈ TN be the target velocity field. The controller
comprises the following two steps. The first controller is
given by

un = M(q)
〈q̇, v〉2
〈v, v〉2∇vv − M(q)

〈q̇, v〉〈∇vv, q̇〉
〈v, v〉2 ∇vv. (18)

Wherein, 〈v, w〉 = vT M(q)w is the inner product on
Riemannian manifold. ∇vw is the covariant derivative
(see Marsden (1999)) of w along with v, which can be
represented in local coordinate

(∇vw)i = vj ∂wi

∂qj
+ Γi

jkvjwk (19)

with the connection coefficient Γi
jk. Note that Γi

jk =
1
2mil

(
∂mkl

∂qj + ∂mlj

∂qk − ∂mjk

∂ql

)
is the Christoffel symbol of

the second kind (mij is the element of the inverse of the
inertia matrix). The controller (18) ensure q̇(t) = v(q(t))
as long as the initial velocity q̇0 is in parallel to v(q0), and
the cross product of the input and the velocity becomes to
zero: 〈un|q̇〉 = 0, that is, energy is preserved.

A second controller is given by

ua = βM(q)
〈ν, ν〉sign〈q̇, v〉

|v| v − βM(q)
|〈q̇, v〉|
|v| ν (20)

with appropriate tracking gain β. Wherein, ν is a vector
such that 5

5 we used α =
〈q̇,v〉
〈v,v〉 .
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Fig. 5. Two simulation results of the velocity field tracking.
The initial conditions are the same as Fig. 4, left.
(Left) Tracking to the velocity field of the invariant
manifold. (Right) Tracking to the “test” velocity field.

q̇ = αv + ν (21)

and 〈v(q), ν〉 = 0.

The final control input is given by

u = un + ua. (22)

By this controller, ν → 0 (t → ∞) is met for any initial
state (q0, q̇0), which means that the velocity of the solution
asymptotically along with the desired tangent vector of the
manifold. (18) and (20) correspond to feedforward and
feedback term, respectively. The former suffers from the
modeling error, which results in poor performance of the
energy preservation, while the latter does not because of
the nature of feedback. See Duindam (2004) for the details.
Note that, unlike in Duindam (2004), we do not need
to compensate the potential term because the symmetric
orbits are the solutions of the uncontrolled Hamiltonian
system.

The left figures in Fig. 5 show the simulation results of this
controller with the approximated tangent velocity field.
The right figures show the results with the target velocity
v = [1,−1]T , which corresponds to the conservative sym-
metric orbits that meet q1 + q2 = 0. The control inputs
for the latter case are larger than the former. However, we
can see the residual errors due to the approximation. Note
that the ankle torque is used, and the energy is preserved
(not shown, but see Fig. 8). If we choose a straight gait
rather than the curved gait, the approximation becomes
better. We expect that the error will become smaller if we
increase the order of the expansion.

We refer the reader to Yamakita (2001), where a similar
walking gait generation is presented, but using another
velocity field control proposed by Li (1999). Different from
the authors method, they attempted to follow the velocity
field of the “asymptotically stable” passive walking gait
(McGeer (1990)), which were approximated by an RBF
network.
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Fig. 6. Stick animation of an under-actuated symmetric
walking on a level ground. The corresponding date is
shown in Fig. 7.
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Fig. 7. Simulation result of an under-actuated symmetric
walking on a level ground. The stride parameter is
fixed to ±0.2 rad. The robot looses the kinetic energy
at every touchdown event and exhibits a few steps of
rocking motions before it finally stops. The walking
gaits are automatically chosen by the energy level,
which are different by every step. See Fig. 6 for the
animation.

6. ASYMPTOTICALLY STABLE WALKING BY
PASSIVITY-BASED CONTROL

So far, we considered fictious lossless model to derive
the invariance controller in S1 in our control strategy
(Section 1). However, (5) does not match to the actual
leg-interchanging map because there is a state transition
according to the impulse equation.

Nevertheless, the invariant manifold is still powerful be-
cause we can select the trajectories of a preferred stride
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Fig. 8. Simulation result of a full-actuated symmetric
walking on a level ground, in which the velocity is con-
strained to the tangential velocity field of the invariant
manifold while the total energy is kept constant. Due
to the approximation error of the invariant manifold,
the control performance deteriorates at the low-speed
walking.

and walking speed (energy). We can make one trajectory
transit to another simply by pumping energy. The stability
is ensured as long as we constrain the solutions onto the
manifold. To illustrete this point, we conducted a simula-
tion where the symmetric orbit is automatically selected
according to the available internal energy, which decreases
whenever the touchdown event occurs. Fig. 6 shows the
result where the simple controller in Section 5.1 is used.
The simulation data is shown in Fig. 7. The robot looses
its energy when touchdown, then enters into the rocking
motion, and finally stops at double support contact with
zero kinetic energy, which is similar to our previous result
by Hyon (2005). In this simulation, the norm of the input
at 6 sec, was 43.844.

On the other hand, Fig. 8 shows the simulation results of
the controller described in Section 5.2. Since the approxi-
mation is not good, the robot fell within a few steps. We
didn’t detailed analysis to see how the performance could
be improved as the approximation order increases.

We give some comments on the rocking motion. The
symmetric orbit in this paper is the orbit that passes origin
of the configuration space. Therefore, there is a minimum
energy such that the robot can pass the potential barrier to
continue walk. Otherwise, we have to consider two-periodic
solution. From (3) (R ◦ φt) ◦ (R ◦ φt) = id. We find a flow
Fr such that (R ◦ Fr) = −id , and the symmetric orbits
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Fig. 9. Simulation result of a simple under-actuated sym-
metric walking on a level ground, in which the velocity
is constrained to q̇1 + q̇2 = 0. The walking gaits are
not changing, but the speed is changing.

passing the fixed point set Fix(R ◦ Fr ◦ R ◦ Fr) . Then
we constrain the solution to these orbits. The hybrid limit
set (Grossman (1993)) where the kinetic energy is zero, is
{q1 = qr = −q2} ∩ {q1 = −qr = −q2} ∩ {p1 = p2 = 0}
Hyon (2005).

For comparison, we also did a simulation where the solu-
tion is forced to follow a single straight symmetric orbit.
The result is shown in Fig. 9 (same as in Hyon (2005)).
Compared to the previous results, the qualitative behav-
iors are not so different, but the amount of the control
torque is larger. The norm of the input at 6 sec. was
147.71. Actually, the time when rocking motion occurs is
1 sec. earlier due toe the rapid decrease in the energy. This
result makes sense because the uncontrolled system does
not posses such a straight symmetric orbit.

Now we are in position to derive a passivity-based con-
troller to asymptotically stabilize the periodic orbits with
desired walking speed. Similar to simple pendulum, we can
stabilize periodic orbits by adding or deleting the energy.
This corresponds to our motion control strategy (S2) in
Section 1. As an example, let us consider stabilization by
the ankle torque. As shown in Section 5.1, the stability is
ensured even if the ankle torque is zero, we only have to
pump the energy into the system by applying the ankle
torque. As a simple controller, we can use a proportional
feedback law

u1 = −KE q̇1(E − E) (23)
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Fig. 10. Simulation result of a stable walking. A simple
ankle actuation is used for controlling the energy.

for some target energy E with KE > 0. Fig. 10 shows the
simulation result. It can be seen that an asymptotically
stable walking has been achieved.

7. SUMMARY

This paper proposed novel walking gait generation for a
double-pendulum-like biped walking model based on the
family of the symmetric orbits. The effectiveness of the
proposed method was confirmed through the numerical
simulations.

By introducing an involution R associated with the leg
switching map, we allowed the flow of the saddle-center dy-
namics of the uncontrolled pendulum to possess the time-
reversal symmetry with respect to R, and the conjunction
of the flow and R to form a family of symmetric orbits
parameterized by the orbital energy and the stride. The
invariant manifold of the family of symmetric orbits was
obtained approximately using a perturbation method. By
constraining the solution onto the invariant manifold using
the control inputs, stable walking gaits were generated
in a semi-global manner. Based on the passivity of the
closed-loop system, a robust speed-controlled walking was
achieved in a very simple way.

Our current work includes the detailed analysis on the
error propagation, learning optimal walkin control by
using iterative learning Satoh (2008), as well as the scaling
up the current method to realistic biped model shown in
Hyon (2005).
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