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Abstract— We propose a new supervised learning and syn-
thesis framework for fast and complex motor tasks. Wherein,
a statics-based task-space controller acts not only as a full-
body motion control module, but also as a module to generate
synergetic joint patterns. The generated joint patterns are
encoded into the parameters of phase trajectories of attractors
and form the synergy of the task. Similar, but faster motions are
synthesized by superposing the task-space controller output and
the trajectory attractor output with the modified parameters,
while learning dynamics and stiffness according to the task
error. We demonstrate the proposed framework by simulating
a balanced fast squat on a humanoid robot model.

I. INTRODUCTION

There have been proposed several methods to compute
the joint torques from some desired task space trajectories
for real-time motor control application. However, most of
the methods require exact dynamics computation, which
becomes less realistic for complex humanoid robot. On the
other hand, learning or adaptive control achieve dynamic
motion control without computing detailed dynamics [1].

For humanoid robot, motor learning on task-space (Carte-
sian space) would be desirable because, for example, balanc-
ing is defined in that space. Recently, Arimoto proposed a
passivity-based control framework for redundant robots [2],
then extended it to iterative learning control in task space
[3]. This work implies that complex redundant robots can
achieve task-space motion trajectories without having exact
model. The passivity-based methods can effectively solve the
redundancy problem by way of the uniquely determined joint
torques through Jacobian transpose and the local damping
injection to joint space. However, there remains problem
how to properly design the local damping according to the
complexity and the speed of the task. Also, past studies
on task-space control or learning mainly focused on the
final performance of the tracking, but did not pay attention
to the generated joint trajectories, which are too valuable
information for redundant robots to be thrown away.

We proposes a online learning algorithm to achieve the
dynamic motion tasks from the slow execution recursively
by effectively combining the task-space controller and the
experienced joint trajectories. The idea was first proposed in
[4], and now we newly implement two learning algorithms;
1) task-space iterative learning for dynamics learning, 2) joint
stiffness adaptation for input optimization.
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Fig. 1. Overview of the proposed motor learning framework

II. OVERVIEW

Fig. 1 shows the proposed framework. This comprises
three modules: C1 task-space control center, C2 joint pattern
generator, C3 supervised adaptive/learning center.

C1 computes the necessary joint torques via Jacobian
transpose, which are required to follow some position of
force trajectories given in the task-space (desired trajec-
tory). This requires forward kinematics based on internal
or external sensory feedback, indicated by FB1 and FB2 in
the figure. As being static, this controller has difficulty in
executing dynamic tasks when used alone.

C2 is arranged to the joint space and learns the joint
trajectories while the robot is slowly executing tasks. The
learned joint trajectories are called reference trajectories in
this paper. C2 also generates attractive force field which pull
the joint trajectories to the reference trajectories by specified
joint stiffness.

C3 learns feedforward torque to compensate the dynamics,
which cannot be treated by C1, according to the task-space
tracking error. According to which space we focus on, we can
use several learning/adaptive control schemes. In this paper,
we introduce task-space iterative learning algorithm proposed
in [3], because full-body motion tasks with balancing are
defined in the task space. C3 also adaptively tunes the joint
stiffness according to the task-space tracking errors.
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These three components work together to achieve dynamic
tasks recursively as follows.

1) C1 statically achieves desired trajectories with low-
frequency.

2) C2 memorizes the generated joint trajectories during
the motion (called reference trajectories), which are
parameterized by the phase.

3) Increase the frequency, and superpose C1 output and
C2 output.

4) C3 learns the feedforward (dynamic compensation)
torque according to the tracking error, while adapting
the stiffness around the reference trajectory.

5) C2 learns the final reference trajectory and the feed-
forward torque.

Thus, the proposed method achieves given motion tasks by
iterative learning control combined with the joint trajectories
with the stiffness adaptation. Rather than computing the
necessary feedforward torque directly by the tracking error,
we obtain joint trajectory in the static execution of a slow
motion task first, then use it as the bootstrap for the faster
motion, step by step, which leads to a safe online learning in
the presence of internal motions due to the joint redundancy.

III. EXAMPLE

We test our framework on a simplified model of a human-
sized humanoid robot. Fig. 2 shows the result of a high-speed
squat. Before the synthesis and learning, the oscillator model
has been trained using slow squatting motion; a sinusoidal
pattern with the amplitude 0.3 m and the frequency of 0.1
Hz. We put normalized Gaussians on 11 anchor points on
the phase coordinate from −π to π to learn the trajectory.
Then, the synthesis has been performed by setting the target
phase frequency to 0.5 Hz, five times faster than the original
one. The task-space gain is set to KP = 1000, KD = 300,
and the joint stiffness is set to KS = 100 for all joints.
Fig. 3 shows the time series of the simulation. The top two
graphs show that the CoM is regulated to zero by the active
balancer. The bottom two graphs show the stiffness torque
from C2, and the feedforward torque from C3, respectively.
It must be noted that without joint trajectory the robot falls
down due to the joint limits. Also, without learning, the task
error does not converge.

Currently, we are implementing the learning controller on
our humanoid robot. Fig. 4 shows a preliminary experiment.
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Fig. 2. Simulation of a fast squat. The vertical lines indicate the virtual
pendulum connecting CoM and ZMP. The time profile is shown in Fig. 3
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Fig. 3. Simulation data corresponding to Fig. 2. Before learning, the
tracking error and the joint stiffness torques are large due to the unmodeled
dynamics and small gains. After learning the dynamics, the tracking error
becomes small, and the stiffness decreases accordingly.

Fig. 4. Periodic squatting motion on a force-controllable humanoid robot


