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We propose a generalized method to estimate waveforms common across trials from electroencephalo-
graphic (EEG) data. From single/multi-channel EEGs, the proposed method estimates the number of
waveforms common across trials, their delays in individual trials, and all of the waveforms. After verifying
the performance of this method by a number of simulation tests with artificial EEGs, we apply it to EEGs
during a Go/NoGo task. This method can be used in general situations where the number and the delays of
EEG waveforms common across trials are unknown.

© 2010 Elsevier Inc. All rights reserved.

Introduction

In many electroencephalographic (EEG) studies, EEG waveforms
common across trials have been estimated by averaging EEG epochs
across trials. For example, evoked potentials, such as visual evoked
potentials (VEPs), are estimated by averaging EEG epochs that are
triggered on visual stimulus onsets. When waveforms temporally
overlap, however, the averaging procedure cannot estimate exact
waveforms because they are mutually contaminated (Kok, 1988;
Takeda et al., 2008a; Verleger, 1988). Further, when the delays of
waveformsare variable andunknown, the averaging procedure cannot
be used (Takeda et al., 2008b; Tallon-Baudry and Bertrand, 1999).

Recently, we proposed two methods that overcome those
limitations (Takeda et al., 2008a; Takeda et al., 2008b). These two
methods assume that twowaveforms common across trials exist in an
EEG epoch and estimate them from single-channel EEG epochs. One
method is used when the delays of two waveforms are given (Takeda
et al., 2008a). By this method, we obtain pure waveforms that are not
contaminated with each other from EEGs during stimulus–response
tasks, in which the delays of two waveforms are given from stimulus
and response onsets. The other method is used when the delays of a
waveform are not given (Takeda et al., 2008b). By this method, we can
obtain the delays as well as the pure waveforms from EEGs during
covert response tasks, such as decision-making tasks.

However, these methods lack versatility. In particular, the validity
of the assumption, the existence of two EEG waveforms common
across trials, is not always guaranteed. Generally, the total number of
waveforms is unknown. It is possible that three or more waveforms

exist. In fact, the study of Verleger et al. (2005) is suggestive of three
waveforms in EEGs during Go trials of a Go/NoGo task: a stimulus-
lockedwaveform, a response-lockedwaveform, and awaveform time-
locked to neither stimulus nor motor response onsets. In such a case,
applying the above methods is inappropriate. On the other hand, the
previousmethods use only single-channel EEGs.While this property is
an advantage when only single-channel EEGs are available, it
sometimes becomes a disadvantage when multi-channel EEGs are
available because using all available EEGs may provide more
information than just using a small portion of it. To investigate various
types of EEGs in detail, we need a more general method that can deal
with an unknown number of waveforms and multi-channel EEGs.

In this paper, we propose a generalized method to estimate EEG
waveforms common across trials. From single/multi-channel EEGs,
the proposed method estimates the number of waveforms common
across trials, their delays in individual trials, and all of the waveforms.
We examine the performance of this method by a number of
simulation tests with artificial EEGs. Then as an example, we apply
this method to EEGs during a Go/NoGo task.

Methods

Proposed method to estimate waveforms common across trials

Assumption and purpose
An EEG epoch of a channel, which is assumed to consist of

waveforms common across trials and noise, is expressed by
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where yn(ch)(t): observed EEG epoch of channel ch in trial n, sk(ch)(t): k-
th waveform of channel ch, τn,k: delay of sk(ch)(t) in trial n, vn(ch)(t):
noise of channel ch in trial n, and K: number of waveforms. Noise vn(ch)

(t) is assumed to be a stationary process.
For simplicity, we rewrite Eq. (1) as a matrix representation in the

Fourier domain as below. By taking the discrete Fourier transform of
Eq. (1), we obtain
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where Yn(ch)(ω), Sk(ch)(ω), and Vn
(ch)(ω): the discrete Fourier transforms

of yn(ch)(t), sk(ch)(t), and vn(ch)(t), respectively. Eq. (2) is rewritten as
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The purpose of the proposed method is to obtain Ŝ(ch)(ω)τ̂ and K̂ only
from Y (ch)(ω), where Ŝ(ch)(ω): the estimated S(ch)(ω),τ̂: the estimat-
ed τ, and K̂: the estimated K.

Overview of procedure for obtaining Ŝ (ch)(ω),τ̂ and K̂
The proposed method consists of three steps: Delay estimation,

Waveform estimation, and Evaluation, which are consecutively repeated
as shown in Fig. 1. At the beginning of the procedure, we set K to 1. In
the Delay estimation step, we obtain τ̂ using preset K. In the Waveform
estimation step, we obtain Ŝ(ch)(ω) using τ̂ and preset K. In the Eva-
luation step, we evaluate whether preset K is true using Ŝ(ch)(ω) and τ̂.
If preset K is evaluated as wrong, we return to the Delay estimation step
by increasing preset K by 1. By repeating this procedure until preset K
is evaluated as true, we can simultaneously obtain Ŝ(ch)(ω),τ̂, and K̂.

The Evaluation procedure is based on the results of Delay estimation
andWaveform estimation. The procedure ofDelay estimation is based on
that of Waveform estimation. Therefore, we describe these steps in the
following order:Waveform estimation, Delay estimation, and Evaluation.

Waveform estimation
In this step, we estimate S(ch)(ω) from Y(ch)(ω) when τ and K are

given.
In the least squares method, estimated S(ch)(ω) is expressed by
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When ω=0, all of the values in E(ω,τ) become 1, and E(ω,τ)TE(ω,τ)
becomes singular. This corresponds to the fact that arbitrary constants
can be added to ŝk(ch)(t). Therefore, we set the time average of ŝk(ch)(t)
to be 0 by
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We can obtain ŝk(ch)(t) by taking the inverse discrete Fourier transform
of Ŝ(ch)(ω).

Delay estimation
In this step, we estimate τ from Y(ch)(ω) when K is given.
In the least squares method, estimated τ is expressed by

τ̂ = argmin
τ
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In this equation, since S(ch)(ω) is neither known nor determined by τ,
we replace it by Ŝ(ch)(ω) in Eq. (5), which is the least squares solution
of S(ch)(ω) determined by τ. Then Eq. (6) is rewritten as

τ̂ = argmin
τ
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By solving Eq. (7), we can estimate τ. However, because E(ω,τ)[E(ω,
τ)TE(ω,τ)]-1E(ω,τ)T in Eq. (7) is nonlinear with respect to τ, we
cannot solve Eq. (7) analytically. We solve it by a hybrid optimization
algorithm that consists of two consecutive stages: global search and
local search. First, we obtain an approximate solution by global search
and then obtain the optimal solution by local search. In global search,
we conduct a random search (Zhigljavsky, 1991) (see Appendix A)
modified from that in our previous study (Takeda et al., 2008b) for M
(=50) times with a different initial τ. Then we obtain M sets of τ and
oτ ( =

PCH
ch = 1

PT = 2
ω = 1 j jY chð Þ ωð Þ− E ω; τð Þ E ω; τð ÞTE ω; τð Þ

h i−1

E ω; τð ÞTY chð Þ ωð Þ j j2) and select the τ that minimizes oτ. In local
search, we conduct a grid search (see Appendix A) by setting the τ
selected in global search as initial τ.

Fig. 1. Flowchart to estimate number of waveforms common across trials, their delays
in individual trials, and all of the waveforms.
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After optimization, we adjusted the averages across n of obtained τ.
This adjustment is required because the averages of τ vary depending
on the time points defined as the onsets of the waveforms, and the
onsets are arbitrarily determined in optimization. For example, we
adjusted the average of τn,2 obtained from the EEGs during a NoGo task
so that a peak in the estimated waveform-2 became its onsets
(described in Data analysis section). Adjusted τ is referred to as τ̂.

Evaluation
In this step, we evaluate whether preset K is true.
As described above, once K is set, we can obtain τ̂ and Ŝ(ch)(ω) by

the steps of Delay estimation and Waveform estimation, respectively,
and we can obtain the residual error between observed and re-
constructed EEGs by

re chð Þ
n tð Þ = IDFT Y chð Þ

n ωð Þ−
XK

k=1

expð − i2πω τ̂n;k = TÞ Ŝk
chð Þ ωð Þ

" #
; ð8Þ

where IDFT[⋯]: inverse discrete Fourier transform of ⋯. We evaluate
preset K by examining ren(ch)(t). When preset K is smaller than true,
sk(ch)(t) should remain in ren(ch)(t). As a result, ren(ch)(t) should be a
nonstationary process. In contrast, when preset K is true, sk(ch)(t)
should disappear from ren(ch)(t). As a result, ren(ch)(t) should be a
stationary process. Therefore, we evaluate preset K by examining
whether ren(ch)(t) is a stationary process. We examine whether the
distribution of ren(ch)(t) differs before and after stimulus onsets. We
divide all ren(ch)(t) (n=1,⋯, N;ch=1,⋯,CH) into two samples
corresponding to before and after stimulus onsets, and conduct a
two-tailed Two-Sample Kolmogorov–Smirnov test to test the null
hypothesis that the two samples are drawn from the same
distribution. The probability of pb0.05 is accepted as significant. If
the null hypothesis is rejected, we regard preset K as wrong. If the null
hypothesis comes to be accepted, we regard preset K as true.

Simulation tests

To examine the performance of the proposed method, we
conducted simulation tests forWaveform estimation, Delay estimation,
and Evaluation.

In these simulation tests, we generated simulated data yn(ch)(t) as
follows. We generated five waveforms, s1(t),⋯s5(t), by an exponential
function, a cosine function, a rectangular function, a sawtooth wave,
and a triangular pulse, respectively. All of the waveforms were
identical regardless of channels ch. We set the variance across t of
the waveforms to 1. We set the delays of s1(t) to 1 and generated the
delays of the other waveforms by Gaussian random numbers
[mean=18, standard deviation (SD)=5]. We used white noise as
noise vn(ch)(t). Then we generated yn(ch)(t) from sk(t), τ and vn(ch)(t),
based on Eq. (1).

Simulation tests for Waveform estimation
To evaluate the quality ofWaveform estimation, we scrutinized the

residual errors between estimated waveforms ŝk(t) and original
waveforms sk(t).

First, we examinedwhether the residual errors fluctuated randomly
around 0. We generated simulated data yn(ch)(t) with the following
parameters: number of waveforms K=2, number of channels CH=1,
number of trials N=100, and signal-to-noise ratio (SNR)=6. SNR was
defined as 10log10(Var[sk(t)]/Var[vn(t)]), where Var[sk(t)]=1. We
repeated the estimation of sk(t) 500 times from different sets of yn(ch)

(t) and obtained 500 sets of residual errors. Because the averages
across time of ŝk(t) are inherently indefinite, we adjusted the averages
across time of the residual errors to 0.We then plotted the time courses
of the means and SDs of the 500 residual errors.

Second, we examined whether the magnitudes of the residual
errors became smaller as the number of trials N increased. We

generated yn(ch)(t) with the following parameters: K=2, CH=1,
N=100,⋯,1000, and SNR=6. For each N, we repeated the extraction
of sk(t) 500 times from different sets of yn(ch)(t) and obtained 500 sets
of residual errors. The magnitudes of the residual errors were
quantified by the variance across time of the residual errors:

1
500 × K

X500

p=1

XK

k=1

Var ŝk
p;Nð Þ tð Þ− sk tð Þ

h i
;

where ŝk(p,N)(t) represents the p-th estimated waveform-k obtained
from the simulated data consisting of N trials. The variance was fitted
by function y=a/N by the least squares method.

Finally, we compared error coefficients a of fitting function y=a/
N obtained in different situations. a represents the magnitude of the
residual errors for all N, and thus a smaller value of a is better. We
generated yn(ch)(t) with the following parameters: K=1,⋯,5, CH=1,
N=100,⋯,1000, and SNR=6. For each K, we obtained a. Because the
averaging procedure can be used when K=1, we also obtained a for
K=1 using the averaging procedure. Because our previous method
(Takeda et al., 2008a) can be used when K=2, we also obtained a for
K=2 using that method.

Simulation tests for Delay estimation
To evaluate the quality of Delay estimation, we examined the

normalized rootmean squared errors (RMSEs) between sets of delays τ
obtained in theDelay estimation step and true τ. RMSEwas calculated by
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where τn,k and τn,ktrue represent delay and true delay, respectively.
First, we examined the validity of Eq. (7) and whether τ became

closer to the true one as optimization proceeded. We generated
simulated data yn(ch)(t) with the following parameters: number of
waveforms K=3, number of channels CH=1, number of trials
N=100, and SNR=6. From yn(ch)(t) by global search, we obtained M
(=50) sets of oτ and RMSEs, and by local search, we obtained one set
of those. Then we made a scatter plot of oτ and the RMSEs.

Second, we examined the relation between estimation accuracy
and SNR. We generated yn(ch)(t) with the following parameters:
K=2,3, CH=1, N=100, and SNR=-20,-15,-10,-5,0. For each K and
SNR, we estimated τ and calculated RMSE. The estimation was
repeated 10 times from different sets of yn(ch)(t).

Finally, we examined the relation between estimation accuracy
and CH. We generated yn(ch)(t) with the following parameters: K=3,
CH=1,2,3, N=100, and SNR=-5. For each CH, we estimated τ and
calculated RMSE. The estimationwas repeated 10 times from different
sets of yn(ch)(t). To examine the effect of adding meaningless channels,
we also generated yn(ch)(t) by

y chð Þ
n tð Þ =

XK

k=1

sk t − τn;k
! "

+ v chð Þ
n tð Þ ch = 1

v chð Þ
n tð Þ ch N 1

;

8
>><

>>:

and calculated RMSE in the same way. In this simulation, we refer to
channels including and not including sk(t) as meaningful and
meaningless channels, respectively.

Simulation tests for Evaluation
In the simulation tests for Evaluation, we first checked the rationale

of the procedure for evaluating the number of waveforms K. We
examined the time courses of the means and SDs across trials of the
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residual errors between the original and reconstructed simulated
data. We generated simulated data yn(ch)(t) with the following
parameters: K=3, number of channels CH=1, number of trials
N=100, and SNR=6. From yn(ch)(t), we obtained three sets of residual
errors using a preset K of 1,2,3.

Then we examined the relation between the reliability of Evalua-
tion and SNR. In the Evaluation step, we calculate the p-value of the
null hypothesis that ren(ch)(t) before and after stimulus onsets are
drawn from the same distribution. Correct K is estimated if the p-value
for K smaller than true is larger than 0.05 and the p-value for true K is
smaller than 0.05. We obtained the probability of satisfying this
condition in the following way. We generated yn(ch)(t) with the
following parameters: K=3, CH=3, N=100, and SNR=-20,-15,-
10,-5,0. For each SNR, we conducted Delay estimation and Waveform
estimation with preset K=2 (smaller than true) and K=3 (true),
obtained two sets of ren(ch)(t), and calculated the two p-values. We
repeated this procedure 10 times and obtained the probability of
satisfying the condition.

Applications to EEGs during Go/NoGo task

As an example, we applied the proposed method to the EEGs
during a Go/NoGo task.

Experimental procedure
The experimental populationwas comprised of nine healthy adults

(age 28.4±3.7 years), all of whom gave informed consents. The local
ethics committee approved the experimental procedure.

The subjects were comfortably seated on a chair in a dimly lit,
electrically shielded room. About 50 cm in front of their eyes, red and
green light-emitting diodes (LEDs) for imperative signals were
vertically arrayed 1.5 cm apart on a black panel. The subjects were
instructed to perform two tasks in the following order: a Go/NoGo task
and a passive viewing task. In the Go/NoGo task, they participated in
four experimental blocks, each consisting of 50 trials. They were
instructed to push a button immediately after a “Go” signal (green LED)
and to not push it after a “NoGo” signal (red LED). The green and red
LEDs were illuminated in random order at almost equal probability. In
two blocks, the subjects had to respondwith their right index finger and
in the other two blocks with their left index finger. In off-line analysis,
the data from the blocks of the left and right fingers were mixed. In the
passive viewing task, the subjects participated in two experimental
blocks, each consisting of 50 trials. They were instructed to passively
view the same stimulus as in the Go/NoGo task. In both tasks, each trial
began with a warning signal (a beep), followed, after a variable delay of
1.8–2.2 s, by the imperative signals (duration: 500 ms). Inter-trial
intervals were randomized from 3.5 to 7.5 s.

During the tasks, surface EEGs were recorded from 19-ch tin
electrodes, mounted in a cap (Electro-Cap International, Inc., Eaton,
Ohio, USA) based on the international 10–20 system. A tin electrode
placed on AFz was used as a ground. The EEGs were amplified on a
Nihon Kohden EEG-1100 with a time constant of 0.3 s. Because we
expected that large EEG activity related to the task execution would
not appear around the earlobes, we placed Ag/AgCl electrodes on
both earlobes and recorded their potentials separately. Their averaged
potentials were subtracted from the EEGs off-line. For monitoring eye
movements, an electrooculogram (EOG) was recorded with a pair of
Ag/AgCl electrodes placed above and below the left eye. The sampling
rate of the EEGs and EOGs was 1000 Hz.

Data analysis

In the off-line analysis, we resampled the EEGs at a rate of 100 Hz.
They were filtered with a bandpass of 2–40 Hz using two kinds of
finite impulse response (FIR) filters: a high-pass filter of 2 Hz (300-
point, -26 dB at 1 Hz) and a low-pass filter of 40 Hz (15-point, -45 dB

at 50 Hz). Then the filtered EEGswere segmented into 2 s epochs from
-500 to 1500 ms after stimulus onsets.

If waveforms common across trials exist in EEGs, their mean and
SD across trials should change with time. The time courses of the
means and SDs of a subject's EEGs during the Go/NoGo task at Fz, C3,
C4, Cz, and Pz clearly showed transient changes, indicating the
existence of such waveforms in these EEGs. Therefore, we applied the
proposed method to them.

The reaction times (RTs) of theGo trialswere defined as the intervals
between the stimulus and thebutton-push signal (response) onsets.We
excluded the Go trials with an RT either shorter than 100 ms or longer
than 400ms, and theNoGo trialswith any response. An artifact criterion
of ±50 μV was used for the EEGs and EOGs to reject trials with excess
ocular artifacts ormeasurementnoise.We obtained 96Go trials and 100
NoGo trials. The RTs were 275.63±46.24 (mean±SD) ms.

In the Delay estimation step, we estimated the delays of the EEG
waveforms common across trials using priori knowledge about the
delays. In the Go/NoGo task, the approximate delays of twowaveforms
can be given from the stimulus and the response onsets; using the
delays simplifies the optimization problem [Eq. (7)]. We assumed that
the delays of waveform-1s slightly fluctuate after the stimulus onsets
and the delays of waveform-2s in the Go trials slightly fluctuate around
the response onsets. Therefore, based on reports that examined the
variable latencies of visual evoked potentials (Mihaylova et al., 1999;
Vassilev et al., 2002; Vaughan et al., 1966), we searched for the delays of
waveform-1s from0 to 50ms after the stimulus onsets and the delays of
waveform-2s in the Go trials from -25 to 25 ms after the response
onsets. We searched for the delays of the other waveforms setting the
initial delays to Gaussian random numbers [mean=180 (ms), SD=50
(ms)]. We set the delay ranges at a width of 500 ms because the EEGs'
SDs, which are indications of the variable delays (Takeda et al., 2008b),
were clearly greater than the pre-stimulus level for about 500 ms after
the stimulus onset. After the optimization of Eq. (7), we adjusted the
delays of the estimated waveforms. The delays of waveform-1s were
adjusted so that the minimum values of the estimated delays became
0 ms. The delays of waveform-2s in the Go trials were adjusted so that
the average of the estimated delays was identical with that of the RTs.
The delays of the other waveforms were adjusted so that the estimated
delays represented the latencies of the maximum positive peak in each
of the estimated waveforms at Cz. In theWaveform estimation step, we
estimated the waveforms using the estimated delays. For comparison
with the estimated waveform-1s, we obtained stimulus-triggered
average EEGs by averaging the EEGs triggered on the stimulus onsets.
For comparisonwith theestimatedwaveform-2s in theGo trials,wealso
obtained response-triggered average EEGsby averaging theEEGsduring
the Go trials triggered on the response onsets. In the Evaluation step, we
evaluated whether the preset number of waveforms was true. We
compared the distributions of the residual errors at Fz, C3, C4, Cz, and Pz
from -0.5 to 0 s with those from 0 to 0.7 s after the stimulus onsets.

After the estimation, using the estimated delays, we estimated the
waveforms from the 19-channel EEGs by the Waveform estimation
procedure and obtained the scalp distributions of the variance across
time of the estimated waveforms. Finally, because the estimated
waveforms seemed to have large oscillatory components, we calculated
the amplitude spectra by taking the discrete Fourier transform of h(t)
ŝk(ch)(t), where h(t) was the Hanning window. We calculated the
amplitude spectra at Fz, Cz, and Pz and averaged them across the
channels. For comparison, we also calculated the amplitude spectra of
the stimulus- and response-triggered average EEGs in the same way.

Results

Simulation tests

Figs. 2A–D shows original waveforms sk(t) (k=1,2,3) and noise
vn(ch)(t). Fig. 2E shows simulated data yn(ch)(t) generated with the
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following parameters: number of waveforms K=3, number of
channels CH=1, number of trials N=100, and SNR=6. Before
proceeding to the simulation tests for the individual steps, we
examined whether the overall procedure (Fig. 1) worked well. From
the simulated data (Fig. 2E), we estimated K, the delays of waveforms
τ, and the sk(t) (Figs. 2F–H). Estimated K is correctly 3. Estimated sk(t)
are highly correlated with the original ones; all of the correlation
coefficients between the estimated and original sk(t) are higher than
0.99 (Figs. 2F–H). The RSMEs between the estimated and original τ

are 0, indicating that the estimation is completely accurate. These
results indicate that the proposed method, as a whole, works well for
the simulated data.

Simulation tests for Waveform estimation
Fig. 3 shows the results of the simulation tests for Waveform

estimation. Figs. 3A and B shows the time courses of themeans and SDs
of the residual errors between the estimated and original waveforms.
These time courses are nearly constant (Figs. 3A and B), indicating that

Fig. 2. Simulation tests for overall procedure. (A–D) Original waveforms sk(t) and noise vn(ch)(t). (A) s1(t). (B) s2(t). (C) s3(t). (D) vn(ch)(t). (E) Simulated data yn(ch)(t) generated from
s1(t), s2(t), s3(t), and vn(ch)(t). (F–H) Estimated waveforms ŝk(t). (F) ŝ1(t). (G) ŝ2(t). (H) ŝ3(t).

Fig. 3. Simulation tests for Waveform estimation. (A, B) Means (solid lines) and means±SDs (dotted lines) of residual errors between estimated and original waveforms across 500
repeated simulations. (A) Result for estimated waveform-1 ŝ1(t). (B) Result for estimated waveform-2 ŝ2(t). (C) Variance of residual errors as function of number of trials N
(diamonds). Solid lines represent fitting curves in form of y=a/N. (D) Error coefficient a of fitting function y=a/N for each number of waveforms K.
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the residual errors have no temporal modulation patterns and
fluctuate randomly. Fig. 3C shows how the variance of the residual
errors changes as the number of trials N increases. The variance is
inversely proportional toN (Fig. 3C), indicating that the residual errors
become smaller as the number of trials increases. Fig. 3D shows how
error coefficients a of fitting function y=a/N changes as the number
of waveforms K increases. a becomes larger as K increases, indicating
that the accuracy of the estimated waveforms becomes lower as the
number of waveforms increases. When K=1, the a of the averaging
procedure is 0.25, which is the same as that of theWaveform estimation
procedure. This indicates that the accuracy of theWaveform estimation
procedure is identical as that of the averaging procedure. When K=2,
the a of our previous method (Takeda et al., 2008a) is 1.91, which is
larger than that of the Waveform estimation procedure. This indicates
that the accuracy of theWaveform estimation procedure is higher than
that of our previous method (Takeda et al., 2008a).

Simulation tests for Delay estimation
Fig. 4 shows the results of the simulation tests for Delay estimation.

Fig. 4A is the scatter plot of RMSEs between the estimated and original
delays τ and the values of objective function oτ. RMSE becomes
smaller as oτ becomes smaller, suggesting the validity of Eq. (7). RMSE
of selected τ in global search (open circle) is smallest among those of

non-selected τ (filled dots), indicating the validity of global search.
RMSE of τ̂ obtained by local search (diamond) is smaller than that of
the selected τ in global search (open circle), indicating the validity
and necessity of local search. Fig. 4B shows the relations between
RMSEs and SNR. RMSEs become smaller as SNR becomes higher,
indicating that the estimation accuracy becomes higher as SNR
becomes higher. For SNRs of -15,-10,-5,0, RMSEs for the number of
waveforms K=2 (dotted line) are significantly smaller than those for
K=3 (solid line) (pb0.05, two-tailedMann–Whitney test), indicating
that the estimation accuracy for K=2 is higher than that for K=3.
Fig. 4C shows the relations between RMSEs and the number of
channels CH. While RMSEs obtained by adding meaningful channels
(solid line) become smaller as CH increases, those by adding
meaningless channels (dotted line) become larger. This indicates
that adding meaningful channels increases estimation accuracy but
not adding meaningless channels.

Simulation tests for Evaluation
Fig. 5 shows the results of the simulation tests for Evaluation. Fig.

5A shows the time course of the means and SDs of the residual errors
between the original and reconstructed simulated data. When the
preset number of waveforms K is smaller than true (K=1,2), the
residual errors are nonstationary; the time courses of the means and/

Fig. 4. Simulation tests for Delay estimation. (A) Scatter plots of values of objective function oτ and RMSEs between estimated and original delays τ. Open circle indicates selected τ in
global search. Filled dots indicate non-selected τ in global search. Diamond indicates converged τ in following local search. (B) RMSEs between estimated and original τ for each SNR.
Solid line represents results for number of waveforms K=3. Dotted line represents results for K=2. (C) RMSEs between estimated and original τ for each number of channels CH.
Solid line represents results for adding meaningful channels. Dotted line represents results for adding meaningless channels. In (B) and (C), diamonds and error bars respectively
represent means and SDs of RMSEs.

Fig. 5. Simulation tests for Evaluation. (A) Means (solid lines) and means±SDs (dotted lines) across trials of residual errors between original and reconstructed simulated data. (B)
Correct rate (%) of estimating true number of waveforms K for each SNR.
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or SDs of the residual errors are not constant. In contrast, when preset
K is true (K=3), the residual errors are stationary; the time courses of
the means and SDs of the residual errors are constant. These results
indicate the rationale of the Evaluation procedure. Fig. 5B shows the
relations between the correct rates (%) of estimating true K and SNR.
The correct rates become higher as SNR becomes higher, indicating
that the reliability of Evaluation becomes higher as SNR becomes
higher.

Application to EEGs during Go trials

Figs. 6A, 7, 8, and 9 show the results of applying the proposed
method to the EEGs during the Go trials. Fig. 6A shows the SDs across
the trials of the residual errors between the original and reconstructed

EEGs. When 3 is the preset number of waveforms, the time courses of
the means and the SDs of the residual errors become almost constant
and the number of waveforms is estimated to be 3. Figs. 7, 8, and 9A
show the estimated waveforms at Fz, Cz, and Pz. The correlation
coefficient between the estimated waveform-1 at Cz and the
stimulus-triggered average EEG at Cz is 0.67, indicating that both
waveforms are similar (Fig. 7A, middle). Waveform-1s exhibit P300 as
well as the stimulus-triggered average EEGs (Fig. 7A). Waveform-1s
have large oscillatory components around 700 ms after the stimulus
onsets (Fig. 7A). The correlation coefficient between the estimated
waveform-2 at Cz and the response-triggered average EEG at Cz is
0.54, indicating that both waveforms are similar (Fig. 8A, middle).
Waveform-2s have large oscillatory components around 400 ms after
the response onsets. Figs. 7, 8, and 9B show the histograms of the

Fig. 6. SDs across trials of residual errors obtained from EEGs at Fz, Cz, and Pz. (A) Go trials. (B) NoGo trials. Red lines represent SDs across trials of EEGs during Go/NoGo task. Blue,
green, and black lines respectively represent SDs across trials of residual errors for preset K of 1, 2, and 3. Time 0 corresponds to stimulus onsets.

Fig. 7. Estimated waveform-1s from EEGs during Go trials. (A) Estimated waveform-1s at Fz, Cz, and Pz (black lines). Red lines represent stimulus-triggered average EEGs at Fz, Cz,
and Pz. Time 0 corresponds to stimulus onset. (B) Histograms of delays of estimated waveform-1s. Time 0 corresponds to stimulus onset. (C) Scalp distributions of variance across
time of estimated waveform-1s. (D) Average amplitude spectra of estimated waveform-1s at Fz, Cz, and Pz (black line). Red line represents average amplitude spectra of stimulus-
triggered average EEGs at Fz, Cz, and Pz.
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delays of the estimated waveforms. The estimated delays are 18.54±
14.87 ms for waveform-1s, 276.25±47.95 ms for waveform-2s, and
329.48±125.58 ms for waveform-3s. Figs. 7, 8, and 9C show the
scalp distributions of the variance across time of the estimated
waveforms. All have large variance around Cz. Waveform-1s also
have large variance around O1 and O2. Figs. 7, 8, and 9D show the
average amplitude spectra of the estimated waveforms at Fz, Cz,
and Pz. All have large amplitude spectra around 2–3 Hz, and
waveform-3s also have large amplitude spectra around 4 Hz. Wave

form-1s and waveform-2s have larger amplitude spectra around
10 Hz than the stimulus- and response-triggered average EEGs,
respectively.

Application to EEGs during NoGo trials

Figs. 6B, 10, and 11 show the results of applying the proposed
method to the EEGs during the NoGo trials. Fig. 6B shows the SDs
across the trials of the residual errors between the original and

Fig. 8. Estimated waveform-2s from EEGs during Go trials. (A) Estimated waveform-2s at Fz, Cz, and Pz (black lines). Red lines represent response-triggered average EEGs at Fz, Cz,
and Pz. Time 0 corresponds to button-push signal onset. (B) Histograms of delays of estimated waveform-2s. Time 0 corresponds to stimulus onset. (C) Scalp distributions of variance
across time of estimated waveform-2s. (D) Average amplitude spectra of estimated waveform-2s at Fz, Cz, and Pz (black line). Red line represents average amplitude spectra of
response-triggered average EEGs at Fz, Cz, and Pz.

Fig. 9. Estimated waveform-3s from EEGs during Go trials. (A) Estimated waveform-3s at Fz, Cz, and Pz. Horizontal axes represent relative time to defined onsets of estimated
waveform-3s. (B) Histograms of delays of estimated waveform-3s. Time 0 corresponds to stimulus onset. (C) Scalp distributions of variance across time of estimated waveform-3s.
(D) Average amplitude spectra of estimated waveform-3s at Fz, Cz, and Pz.
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reconstructed EEGs. When 2 is the preset number of waveforms, the
time courses of the means and the SDs of the residual errors
become almost constant and the number of waveforms is estimated
to be 2. Figs. 10 and 11A show the estimated waveforms at Fz, Cz,
and Pz. The correlation coefficient between the estimated wave-
form-1 at Cz and the stimulus-triggered average EEG at Cz is 0.95,
indicating that both waveforms are similar (Fig. 10A, middle).
Waveform-1s exhibit N200 and P300 as well as the stimulus-
triggered average EEGs (Fig. 10A). Figs. 10 and 11B show the

histograms of the delays of the estimated waveforms. The estimated
delays are 18.10±12.53 ms for waveform-1s, and 336.30±109.61
ms for waveform-2s. Figs. 10 and 11C show the scalp distributions
of the variance across time of the estimated waveforms. All have
large variance around Cz. Waveform-1s also have large variance
around O1 and O2. Figs. 10 and 11D show the average amplitude
spectra of the estimated waveforms at Fz, Cz, and Pz. All have large
amplitude spectra around 2–3 Hz, and waveform-2s also have large
amplitude spectra around 5 Hz.

Fig. 10. Estimated waveform-1s from EEGs during NoGo trials. (A) Estimated waveform-1s at Fz, Cz, and Pz (black lines). Red lines represent stimulus-triggered average EEGs at Fz,
Cz, and Pz. Time 0 corresponds to stimulus onset. (B) Histograms of delays of estimated waveform-1s. Time 0 corresponds to stimulus onset. (C) Scalp distributions of variance across
time of estimated waveform-1s. (D) Average amplitude spectra of estimated waveform-1s at Fz, Cz, and Pz (black line). Red line represents average amplitude spectra of stimulus-
triggered average EEGs at Fz, Cz, and Pz.

Fig. 11. Estimated waveform-2s from EEGs during NoGo trials. (A) Estimated waveform-2s at Fz, Cz, and Pz. Horizontal axes represent relative time to defined onsets of estimated
waveform-2s. (B) Histograms of delays of estimated waveform-2s. Time 0 corresponds to stimulus onset. (C) Scalp distributions of variance across time of estimated waveform-2s.
(D) Average amplitude spectra of estimated waveform-2s at Fz, Cz, and Pz.
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Discussion

In this study, we proposed a generalized method to estimate EEG
waveforms common across trials. From single/multi-channel EEGs,
the method estimates the number of waveforms common across
trials, the delays of waveforms, and all of the waveforms. The
performance of the algorithm was verified by a number of simulation
tests. We also applied this method to EEGs during a Go/NoGo task.

The purpose of the proposed method, estimating all EEG wave-
forms common across trials, is much more demanding than the tasks
of our previous methods (Takeda et al., 2008a; Takeda et al., 2008b)
and the other methods for estimating a waveform whose delays are
variable and unknown (Biggins et al., 1997; Jaśkowski and Verleger,
1999, 2000; McGillem et al., 1985; Möcks et al., 1988; Pham et al.,
1987; Puce et al., 1994a,b; Woody, 1967). We achieved such a
demanding goal with a step-by-step approach. We divided our
purpose into three easier subproblems (estimate waveforms, estimate
their delays, and estimate their number) and solved the subproblems
step-by-step, as shown in Fig. 1. This strategy is an essential point in
the versatility of the proposed method.

Another method for separating EEGs is spatial decomposition by
independent component analysis (ICA) (Jung et al., 2001; Makeig et
al., 2004). ICA is a computational method for decomposing multi-
channel data into mutually independent components with different
scalp distributions. Therefore, to separate waveforms by ICA, the EEGs
need to satisfy the following three conditions: (1) the number of
channels is larger than that of the waveforms, (2) the variability of the
delays of waveforms is adequately large, and (3) the waveforms have
different scalp distributions. Condition 1 is needed because ICA cannot
distinguish a number of signals larger than the channels. Condition 2
is needed because ICA cannot distinguish correlated signals.When the
delays of waveforms are within a small range, a waveform tends to
overlap on certain phases of the other waveforms, and their time
series tend to be correlated with each other. In fact, in our simulation
test, ICA did not separatewaveformswhen the variability of the delays
was small (data not shown). Condition 3 is needed because ICA cannot
distinguish signals attributable to identical sources. In fact, in our
simulation test, ICA did not separate waveforms when the source of
the waveforms was the same (data not shown). We decomposed the
EEGs during the Go/NoGo trials into independent components by ICA,
and applied the proposed method to the components. As a result, two
or more waveforms were estimated from some of the components
(data not shown), indicating that the EEGs during the Go/NoGo trials
did not satisfy the three conditions. In contrast to ICA, the proposed
method does not need these three conditions. Therefore, from the
viewpoint of estimating waveforms common across trials, we
consider our method better than ICA.

The proposed method consists of three steps: Delay estimation,
Waveform estimation, and Evaluation. Below, we discuss the three
steps individually.

Waveform estimation

In the Waveform estimation step, we estimate waveforms
common across trials when the number and the delays of waveforms
are given. The validity of the procedure is verified by the simulation
results (Fig. 3).

When the number of waveforms is 2, the purpose of Waveform
estimation is almost the same as that of our previous method (Takeda
et al., 2008a). However, their performances are different. A compar-
ison of error coefficients a of Waveform estimation and our previous
method (Takeda et al., 2008a) indicates the superiority of the Wave-
form estimation procedure. This is due to the differences between their
procedures. In our previous method (Takeda et al., 2008a), waveforms
were estimated by algebraically solving equation yn(ch)(t)=s1(ch)(t)
+s2(ch)(t-τn)+vn(ch)(t) with some averaging procedures. As a result,

our previous method has a limitation: slow waves (∼1 Hz) in noise
are amplified by the estimation. In the Waveform estimation
procedure, waveforms are estimated by the least squares method,
which somehow eliminates the limitation. Therefore, it appears best
to adopt theWaveform estimation procedure rather than our previous
method (Takeda et al., 2008a), even when the number of waveforms
is known to be 2.

Delay estimation

In the Delay estimation step, we estimate the delays of waveforms
common across trials by solving the optimization problem of Eq. (7).
The validity of Eq. (7) and the procedure for solving it are verified by
the simulation results (Fig. 4A).

The simulation results in Fig. 4B show that estimation accuracy is
low when SNR is low. This is because, when SNR is low, wrong delays
tend to minimize the value of objective function oτ more than true
delays. Consequently, the validity of Eq. (7) becomes lowwhen SNR is
low. On the other hand, the simulation results in Fig. 4C indicate that,
when noise is independent across channels, estimation accuracy
increases as the number of meaningful channels increases. This
suggests a solution for improving estimation accuracy when SNR is
low: adding meaningful channels.

The simulation results in Fig. 4B also show that estimation accuracy
becomes lower when the number of waveforms increases. This is due
to the increased difficulty of optimization. As the number of wave-
forms increases, the number of delays to be searched for increases and
the difficulty of optimization increases. Therefore, when there seems
to be many waveforms whose delays are unknown, we need to spend
much time for optimization or to find better optimization algorithms.

Evaluation

In the Evaluation step, we evaluate whether the preset number of
waveforms common across trials is true by examining the residual
errors between original and reconstructed EEGs. The rationale of the
procedure for Evaluation is verified by the simulation results (Fig. 5A).

To select a criterion for evaluating the preset number of wave-
forms, by using simulated data (not shown), we tested various
criteria, such as Akaike's information criterion (AIC) (Akaike, 1974)
and the cross-validation method. Among the criteria we tested, the
procedure used in this study is the best from the viewpoint of
providing stable and reasonable performance (Fig. 5B).

The simulation results in Fig. 5B show that the reliability of Eva-
luation is lowwhen SNR is low. This is because, as SNR becomes lower,
residual errors become more noisy, and testing whether the
distributions of residual errors before and after stimulus onsets are
the same becomes more difficult. Therefore, to increase the reliability
of Evaluation, we need to increase SNR.

It is possible that the numbers of waveforms are different across
channels. For example, EEGs at distant electrodesmay have a different
number of waveforms, e.g., 1 waveform for electrode-1 and 2
waveforms for electrode-2. In such cases, the proposed method
estimates the maximum number of waveforms, and some waveforms
estimated from EEGs that have the smaller number of waveforms
become flat. In the above example, the estimated number of
waveforms should be 2, and one of the waveforms estimated from
EEGs at electrode-1 should be flat. Therefore, we can know the
effective number of waveforms for each channel by examining
estimated waveforms.

Some extended usages

We have described a basic usage of our method to estimate EEG
waveforms common across trials. In practice, we can use this method
in a variety of ways depending on our needs and situations. For
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example, only the Waveform estimation step is needed when we
estimate the approximate waveforms of stimulus- and response-
locked components (Braun et al., 2002; Endo et al., 1999; Goodin et al.,
1986; Jung et al., 2001; Makeig et al., 2004) from EEGs during
stimulus–response tasks. Further, we can easily extend the method.
We describe some extended usages of the methods below.

Using a priori knowledge about importance of channels and frequencies
Sometimes, we have a priori knowledge about the importance of

channels and/or frequencies. For example, EEGs at frontal channels
are sometimes contaminated with EOG and have low SNR. Further,
EEGs at high frequencies (N50 Hz) are sometimes contaminated with
electromyographic activity. In such cases, using these channels and
frequencies as well as others may decrease the accuracy of the
estimation, as shown in Fig. 4C. In the Delay estimation step, we can
use the knowledge about the importance of channels and frequencies
by replacing Eq. (7) with

τ̂ = argmin
τ

XCH

ch=1

Wch chð Þ
XT =2

ω=1
Wω ωð Þ j jY chð Þ ωð Þ−E ω; τð Þ

× E ω; τð ÞTE ω; τð Þ
h i−1

E ω; τð ÞTY chð Þ ωð Þ j j2;

ð9Þ

where Wch(ch): a weight function of ch, and Wω(ω): a weight
function of ω.

Using a priori knowledge about delays of waveforms
Sometimes we have a priori knowledge about the delays of EEG

waveforms common across trials. For example, in stimulus–response
tasks, the approximate delays of two waveforms can be given from
stimulus and response onsets. In such cases, using the given delays
simplifies the optimization problem [Eq. (7)] and may increase
estimation accuracy. In the Delay estimation step, we can use the
knowledge about the delays by restricting the delays' search space to
the neighborhood of the given delays.

Using a priori knowledge about waveforms
Sometimes we have a priori knowledge about EEG waveforms

common across trials. For example, an approximate waveform can be
given by averaging EEGs triggered on stimulus onsets. In such cases,
using knownwaveforms simplifies the optimization problem [Eq. (7)]
andmay increase the estimation accuracy. In theDelay estimation step,
we can use the knowledge about waveforms by replacing Eq. (7) with

τ̂ = argmin
τ

XCH

ch=1

XT =2

ω=1
j jY chð Þ ωð Þ− E1 ω; τ1ð ÞS chð Þ

1 ωð Þ−E2 ω; τ2ð Þ

× E2 ω; τ2ð ÞTE2 ω; τ2ð Þ
h i−1

E2 ω; τ2ð ÞT Y chð Þ ωð Þ−E1 ω; τ1ð ÞS chð Þ
1 ωð Þ

! "
jj2;

ð10Þ

where S1(ch)(ω): a L-by-1 matrix generated from known Lwaveforms, E1
(ω,τ1): a N-by-L matrix generated from τ1 [=τn,k(n=1,⋯,N;k=1,⋯,L)],
and E2(ω,τ2): a N-by-(K-L) matrix generated from τ2 [=τn,k(n=1,⋯,N;
k=L+1,⋯,K)].

Using waveform correlation across channels
In the case of low spatial resolution data, such as EEGs, waveforms

are correlated across channels. For example, waveforms at O1 may
resemble those at O2 because the two electrodes are close to each
other. In such cases, using the waveform correlation may increase the
estimation accuracy. There are two ways to use the waveform
correlation: (1) by using spatial decomposition techniques before
applying our method, and (2) by assuming a model that incorporates
the waveform correlation. In the first case, we first decompose EEGs
by spatial decomposition techniques, such as ICA or principal
component analysis (PCA). Then, we apply the proposed method to

the decomposed components. Because the decomposition techniques
separate signals from noises, the estimation accuracy increases. In the
second case, we assume, for example, a model in which temporal
waveforms are the same but their amplitudes are different across
channels. In this model, an EEG can be expressed by

y chð Þ
n tð Þ =

XK

k=1

ak chð Þsk t − τn;k
! "

+ v chð Þ
n tð Þ; ð11Þ

where yn(ch)(t): observed EEG epoch of channel ch in trial n, ak(ch):
amplitude of k-th waveform of channel ch, sk(t): k-th waveform, τn,k:
delay of sk(t) in trial n, vn(ch)(t): noise of channel ch in trial n, and K:
number of waveforms.

The unknown parameters ak(ch), sk(t), τn,k, and K can be estimated
in an iterative way. When Eq. (11) is valid, its estimation accuracy
would be higher than that of Eq. (1) because Eq. (11) has fewer
parameters than Eq. (1). In fact, in our preliminary simulation test, the
estimation accuracy of Eq. (11) was higher (data not shown).

Target data
We focused on EEGs, but the proposed method can also be applied

to other kinds of brain imaging data, such as magnetoencephalo-
graphy (MEG) data. Also, the method can be applied to preprocessed
EEG/MEG data. For example, the method can be applied to time-
frequency data, such as a scalogram obtained by taking a wavelet
transform of EEG/MEG. In this case, yn(ch)(t) in Eq. (1) is regarded as
the value of time-frequency data at time t and frequency ch.

Limitation

Although the proposed method seems generally useful for wide
EEG analyses, it also has an inherent limitation: the validity of the
assumption [Eq. (1)]. The proposed method assumes that noise is a
stationary process, and in the Evaluation step, nonstationary residual
errors are due to the remaining waveforms common across trials.
However, it is possible that the nonstationary residual errors are due
to other factors. Nonstationary background noise or the variability of
waveforms (Mihaylova et al., 1999; Vassilev et al., 2002; Vaughan et
al., 1966) may be responsible for the nonstationary residual errors. In
such cases, the proposed method may extract nonexistent false
waveforms. To prevent this, before applying the proposedmethod, we
need to examine whether the nonstationary residual errors are
actually due to waveforms common across trials.

Applications to EEGs during Go/NoGo task

Before applying the proposed method to the EEGs during the Go/
NoGo task, we examinedwhether nonstationary EEGs are due to other
factors than waveforms common across trials. We focused on the SDs
of the EEGs across the trials and examined whether the increased SDs
after the stimulus onsets (Fig. 6, red lines) are due to other factors
than the variable delays of waveforms common across trials.

We examined whether the variability in the amplitudes of
waveforms was responsible for the increased SDs. From the EEGs
during the Go trials, we estimated stimulus- and response-locked
waveforms by the Waveform estimation procedure using the RTs,
estimated the trial-to-trial variability of the amplitudes of the
estimated waveforms by the least squares method, and obtained
residual errors. As a result, increases in the residual errors' SDs still
occurred (data not shown). From the EEGs during the NoGo trials, we
estimated stimulus-locked waveforms by the stimulus-triggered
averaging procedure, estimated the trial-to-trial variability of the
amplitudes of the estimated waveforms by the least squares method,
and obtained the residual errors. As a result, increases in the residual
errors' SDs still occurred (data not shown). Therefore, we concluded
that the variability of the amplitudes of the waveforms was not fully
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responsible for the increased SDs during the Go/NoGo task. Further-
more, we examined whether the stimulus increased the amplitude of
the background noise and whether the increased background noise
was responsible for the increased SDs. We examined the SDs of the
EEGs during the passive viewing task. Since the SDs did not show such
drastic increases as the EEGs during the Go/NoGo task (see Takeda et
al., 2008b), we concluded that the increased background noise by the
stimulus was not fully responsible for the increased SDs during the
Go/NoGo task. Based on these preliminary examinations, we assumed
the validity of the assumption [Eq. (1)] for the EEGs during the Go/
NoGo tasks and thus applied the proposed method to the EEGs.

From the EEGs during the Go/NoGo tasks, for the first time we
estimated the numbers of waveforms common across trials, their
delays, and all of the waveforms. As the preset number of waveforms
increases, the time courses of the SDs of the residual errors become
more constant (Fig. 6). This suggests that the estimated waveforms
and their delays are responsible for the increased SDs. The estimated
waveforms are discussed below.

Waveforms time-locked to stimulus onsets

Waveform-1s in the Go and NoGo trials are stimulus-locked.
Therefore, waveform-1s are considered to reflect stimulus-related
brain processes, such as perception of the visual stimuli. This is
confirmed by the scalp distributions of waveform-1s, which have
large power at the occipital regions (Figs. 7 and 10C).

The early parts (0–300 ms) of waveform-1s in the Go trials
resemble those of the stimulus-triggered average EEGs during the Go
trials (Fig. 7A). This indicates that, in the early parts (0–300ms) of the
stimulus-triggered average EEGs during the Go trials, the effect of the
overlapping of the other waveforms, such as movement-related
potentials (MRPs), is small. The effect of the overlapping of MRPs on
stimulus-triggered average EEGs during Go trials has been debated
(Kok, 1988; Smith et al., 2008; Verleger, 1988; Verleger et al., 2006).
With the proposed method, we extracted ourselves from that
problem because we can obtain pure waveforms uncontaminated
with MRPs.

Waveform-1s in the NoGo trials resemble the stimulus-triggered
average EEGs during the NoGo trials (Fig. 10A). This indicates that, in
the stimulus-triggered average EEGs during the NoGo trials, the effect
of the overlapping of the other waveforms is small. Waveform-1s in
the NoGo trials exhibit N200 and P300 as well as the stimulus-
triggered average EEGs. The peaks in the waveform-1s in the NoGo
trials may reflect themotor inhibition or the detection of the response
conflict as discussed for those in the Go/NoGo literature (Bokura et al.,
2001; Donkers and van Boxtel, 2004; Falkenstein et al., 1999;
Ramautar et al., 2004).

Waveforms time-locked to response onsets

Waveform-2s in the Go trials are response-locked. Therefore, these
waveforms are considered to reflect such response-related brain
processes as execution of button pushes.

Around 400 ms after the response onsets, waveform-2s in the Go
trials have large alpha band oscillations (Fig. 8A, black lines). This fact
is confirmed by the amplitude spectra (Fig. 8D, black line) and the
time-frequency plots (data not shown). The alpha oscillation after the
response onsets may be regarded as the event-related synchroniza-
tion (ERS) of the alpha band (Neuper and Pfurtscheller, 2001). The
ERS of the alpha band may represent a deactivated cortical area or
inhibited cortical networks (Neuper and Pfurtscheller, 2001). In
contrast to the waveform-2s in the Go trials, the response-triggered
average EEGs during the Go trials do not have the ERS of the alpha
band (Fig. 8A, red lines). This may indicate that the proposed method
extracts the ERS of the alpha band but the response-triggered
averaging procedure does not.

Waveforms time-locked to neither stimulus nor response onsets

Waveform-3s in the Go trials and waveform-2s in the NoGo trials
are time-locked to neither the stimulus nor the response onsets. Such
waveforms have been previously hard to see because of their
unknown delays.

Verleger et al. (2005) examined EEGs during choice reaction time
tasks by stimulus- and response-triggered averaging procedures and
showed evidences that a component (P3b) is time-locked to neither
stimulus nor motor response onsets. Like P3b, the positive peaks in
the waveform-3s in the Go trials appear around 300 ms after the
stimulus onsets and are time-locked to neither the stimulus nor the
response onsets. Verleger et al. (2005) suggested that P3b reflects a
process that mediates between perceptual analysis and response
initiation. It remains unclear whether their interpretation can be
applied to the positive peaks in the waveform-3s in the Go trials
because the delays of the positive peaks in the waveform-3s are
longer than the RTs in about half of the Go trials; if the peaks reflect
the mediating process, their delays should be between the stimulus
and the response onsets.

On the other hand, the properties (temporal waveforms, delays,
scalp distributions, and amplitude spectra) of waveform-3s in the Go
trials resemble those of waveform-2s in the NoGo trials (Figs. 9 and
11). This may indicate that these waveforms reflect the same brain
process in the Go and NoGo trials, such as monitoring task
performance. To elucidate the functional role of the waveforms, we
need further examinations, such as a comparison with the waveforms
estimated from EEGs during a variety of tasks and a source estimation
of the waveforms.

Conclusion

We proposed a generalized method to estimate EEG waveforms
common across trials. The main achievement of the proposed method
is its ability to deal with an unknown number of multiple waveforms
and multi-channel EEGs. In general situations, this method can be
used in a variety of ways.
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Appendix A

The procedure for random search in global search is described in
MATLAB style as follows:

Generate τ by random numbers;
Obtain oτ;
for iter=1:20

for k=1:K
for n=1:N

Make τ′ by changing τn,k in τ randomly;
Obtain oτ′;
if oτ′boτ

oτ=oτ′;
τ=τ′;

end
end

end
end.
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The procedure for grid search in local search is described in
MATLAB style as follows:

Set τ selected in global search;
Obtain oτ;
o′=oτ+1;
while oτbo′

o′=oτ;
for k=1:K

for n=1:N
for t=τmin:τstep:τmax

Make τ′ by changing τn,k in τ to t;
Obtain oτ′;
if oτ′boτ

oτ=oτ′;
τ=τ′;

end
end

end
end

end,

where τmin: minimum value of τn,k, τstep: step of τn,k, and τmax:
maximum value of τn,k.
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