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a b s t r a c t 

Repetitive propagating activities in resting-state brain activities have been widely observed in various species 

and regions. Because they resemble the preceding brain activities during tasks, they are assumed to reflect past 

experiences embedded in neuronal circuits. “Whole-brain ” propagating activities may also reflect a process that 

integrates information distributed over the entire brain, such as visual and motor information. Here we reveal 

whole-brain propagating activities from human resting-state magnetoencephalography (MEG) and electroen- 

cephalography (EEG) data. We simultaneously recorded the MEGs and EEGs and estimated the source currents 

from both measurements. Then using our recently proposed algorithm, we extracted repetitive spatiotemporal 

patterns from the source currents. The estimated patterns consisted of multiple frequency components, each of 

which transiently exhibited the frequency-specific resting-state networks (RSNs) of functional MRIs (fMRIs), such 

as the default mode and sensorimotor networks. A simulation test suggested that the spatiotemporal patterns re- 

flected the phase alignment of the multiple frequency oscillators induced by the propagating activities along 

the anatomical connectivity. These results argue that whole-brain propagating activities transiently exhibited 

multiple RSNs in their multiple frequency components, suggesting that they reflected a process to integrate the 

information distributed over the frequencies and networks. 
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. Introduction 

Over the last two decades, resting-state (or spontaneous) brain activ-

ties have attracted much interest in the neuroscience community. They

re shown to be not random; they are structured in space and time (e.g.,

alesky et al., 2014 ). 

In nonhuman studies, repetitive spatiotemporal patterns in resting-

tate brain activities have been widely observed in various species and

egions, such as rat and mouse hippocampal place cells ( Dragoi and

onegawa, 2011; Ji and Wilson, 2007; Wilson and McNaughton, 1994 )

nd rat and cat visual cortices ( Han et al., 2008; Ikegaya et al., 2004; Ji

nd Wilson, 2007 ). Theoretical studies have argued that such patterns

re formed by propagating activities along strong anatomical connec-

ions ( Izhikevich et al., 2004; Teramae et al., 2012 ). Because the pat-

erns resemble the preceding brain activities during tasks, they proba-

ly reflect past experiences embedded in neuronal circuits ( Han et al.,

008; Ji and Wilson, 2007; Wilson and McNaughton, 1994 ). On the

ther hand, “whole-brain ” propagating activities were also observed in

ice ( Matsui et al., 2016 ), perhaps reflecting a process that integrates

he information distributed over the entire brain, such as visual and mo-

or information. 
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In this paper, we define propagating activity and spatiotemporal pat-

erns as follows. Propagating activity is literally the brain activity that

irculates through anatomical connections. Spatiotemporal patterns are

bservations represented by the two-dimensional matrices of space ×
ime (Supplementary material, SFig. 1). Propagating activities gener-

te spatiotemporal patterns in brain measurement data, such as calcium

maging. Therefore, propagating activity and spatiotemporal patterns

hare a cause and effect relationship. 

Human studies have also examined propagating activities from

esting-state functional MRIs (fMRIs). Using a template matching algo-

ithm, Majeed et al. (2011) identified repetitive spatiotemporal patterns

hat consist of an alteration between the activation of the default mode

etwork (DMN) and the task-positive network. We also extracted repet-

tive spatiotemporal patterns from over 1,000 subjects’ resting-state fM-

Is including subjects with autism spectrum disorder (ASD) and typi-

ally developed individuals and examined the differences in the patterns

etween the groups ( Takeda et al., 2019a ). Using temporal lag analyses,

itra et al. (2014) , Mitra et al. (2015a,b) , Mitra and Raichle (2016) ex-

ensively examined the temporal structures of propagating fMRI signals.

owever, because fMRIs measure hemodynamic responses to neuronal

ctivities and the responses are slow, it is difficult to identify neuronal

ropagating activities in the millisecond order from fMRIs. 
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On the other hand, human electrophysiological studies have exam-

ned propagating activities with fine temporal resolution. Electroen-

ephalography (EEG) studies suggested the existence of whole-brain

ropagating activities based on sensor space analyses ( Ito et al., 2005;

007; Massimini et al., 2004 ). Electrocorticography (ECoG) studies re-

ealed propagating activities at the motor and temporal cortices ( Muller

t al., 2018; 2016; Takahashi et al., 2011 ). A magnetoencephalography

MEG) study revealed the temporal structure of alpha band (8–13 Hz)

ctivities using temporal lag analysis ( Basti et al., 2019 ). However, spa-

iotemporal patterns formed by whole-brain propagating activities re-

ain hidden in human resting-state electrophysiological studies. 

Conventionally, MEG/EEG studies have examined spatiotemporal

atterns that are time-locked to external stimulus onsets: event-related

elds/potentials. Such patterns provide rich information about the prop-

gating activities driven by the stimuli, such as the time and place infor-

ation of signal flows. In the case of resting-states, however, such pat-

erns are difficult to extract because resting-state data do not have overt

timulus or response onsets; the patterns’ onsets are also unknown. To

olve this problem, we developed a method called SpatioTemporal Pat-

ern estimation (STeP) ( Takeda et al., 2016 ). From resting-state brain ac-

ivity data, STeP simultaneously estimates repetitive spatiotemporal pat-

erns and their onsets by alternately iterating the updates of the shapes

nd onsets of the patterns. More recently, we extended STeP for big data

BigSTeP) ( Takeda et al., 2019a ). From many or long resting-state data,

igSTeP estimates spatiotemporal patterns with less computation cost

han STeP. 

In this study, we reveal spatiotemporal patterns generated by whole-

rain propagating activities from human resting-state MEG and EEG

ata. We simultaneously recorded the MEGs and EEGs and estimated

he source currents from both measurements. Then using BigSTeP, we

xtracted repetitive spatiotemporal patterns from the source currents

nd examined their temporal frequencies and spatial similarities with

MRI’s resting-state networks (RSNs). Finally, we conducted a simula-

ion test to examine how the spatiotemporal patterns were generated

rom propagating activities along the anatomical connectivity. These

nalyses revealed the whole-brain propagating activities, which tran-

iently exhibited multiple RSNs in their multiple frequency components,

uggesting that they reflected a process to integrate the information dis-

ributed over the frequencies and the networks. 

. Materials and methods 

.1. MEG-EEG experiment 

Twelve healthy subjects [2 females, 26.8 ± 7.8 (mean ± standard

eviation [SD]) years old] participated in our MEG-EEG experiment. All

ubjects gave written informed consent for the experimental procedures,

hich were approved by the ATR Human Subject Review Committee. 

They performed a resting-state task for two runs. In this task, they

xated on a cross for 5 min. 

During the task, we simultaneously recorded their MEGs and EEGs

ith a whole-head, 400-channel system (210-channel Axial and 190-

hannel Planar Gradiometers; PQ1400RM; Yokogawa Electric Co.,

apan) and a whole-head, 63-channel system (BrainAmp; Brain Products

mbH, Germany), respectively. The EEG electrodes were placed accord-

ng to the extended 10–20 system using FPz and FCz as a ground and

 reference, respectively. Electrooculograms (EOGs) were also recorded

imultaneously. The sampling frequency was 1 kHz. 

.2. MRI experiment 

The subjects also participated in an MRI experiment to record their

1-weighted images. They again gave written informed consent for the

xperimental procedures, which were approved by the ATR Human Sub-

ect Review Committee. 
2 
The T1-weighted images were recorded by three Tesla MR scanner

MAGNETOM Trio 3T; Siemens, Germany) with the following acquisi-

ion parameters: 2250-ms repetition time; 3.06 ms echo time; 9-degrees

ip angle; 1 mm thick slices; 256 ×256 mm field of view; and 256 ×256

maging matrix with 208 slices. 

.3. Preprocessing MEG and EEG data 

To preprocess the MEG and EEG data, we used Variational Bayesian

ultimodal EncephaloGraphy (VBMEG) v2.2 ( Sato et al., 2004; Takeda

t al., 2019b; Yoshioka et al., 2008 ), which is a MATLAB toolbox for

EG/EEG source imaging ( https://vbmeg.atr.jp/ ). Using reference sen-

or data in the MEG, environmental noise was removed from the MEG

ata by time-shift principal component analysis (PCA) ( de Cheveigné

nd Simon, 2007 ). The MEG and EEG data were passed through a low-

ass finite impulse response (FIR) filter with a cutoff frequency of 50

z, sampled at 500 Hz, and passed through a high-pass FIR filter with a

.4-Hz cutoff frequency. The EOG artifacts were regressed out for each

ensor. Cardiac artifacts and sensor noise were removed by independent

omponent analysis (ICA) ( Jung et al., 2001 ). We excluded the sensors

hose powers exceeded their mean + 10 ×SD across the sensors. For

he EEG data, we applied the common average reference and made the

verages of the EEG data across the sensors to 0. 

.4. Estimating source currents 

From the preprocessed MEG and EEG data, we estimated the source

urrents at 10,004 vertices on the cortex. 

First, we made leadfield matrices for the MEG and EEG data using

BMEG. We respectively constructed 1-shell (cerebrospinal fluid [CSF])

nd 3-shell (CSF, skull, and scalp) head conductivity models for the MEG

nd EEG data. Based on the models, we made leadfield matrices by solv-

ng the Maxwell equations with a boundary element method (BEM).

ere we assumed three-dimensional current dipoles parallel to the 𝑥 , 𝑦 ,

nd 𝑧 axes. 

Then, we estimated the source currents by a linearly constrained

inimum variance (LCMV) beamformer ( Van Veen et al., 1997 ). For

ach axis, the current was estimated by 

( 𝑣, 𝑡 ) = 𝒘 𝑣 𝒎 ( 𝑡 ) , 

here 𝑞( 𝑣, 𝑡 ) is the current at vertex 𝑣 and time 𝑡 , 𝒘 𝑣 is the 1 × ( 𝑁 𝑚 + 𝑁 𝑒 )
nverse filter, 𝑁 𝑚 is the number of MEG sensors, 𝑁 𝑒 is the number of EEG

ensors, and 𝒎 ( 𝑡 ) is a ( 𝑁 𝑚 + 𝑁 𝑒 ) × 1 data vector containing the MEG and

EG data at time 𝑡 . To accommodate the different scales between the

EG and EEG data, the data and their leadfields were normalized by

he leadfield norms ( Henson et al., 2011; Takeda et al., 2019b ). The

nverse filter was obtained by 

 𝑣 = [ 𝒉 T 
𝑣 
�̃� 

−1 
𝒉 𝑣 ] −1 𝒉 T 𝑣 �̃� 

−1 
, 

here 

̃
 = 𝑪 + 𝜆𝑰 . 

 𝑣 is the ( 𝑁 𝑚 + 𝑁 𝑒 ) × 1 leadfield vector containing the MEG and EEG’s

eadfields for vertex 𝑣 . 𝑪 is the ( 𝑁 𝑚 + 𝑁 𝑒 ) × ( 𝑁 𝑚 + 𝑁 𝑒 ) covariance ma-

rix computed between all sensor pairs. 𝜆 is a regularization constant

omputed by 

= 

tr 𝑪 

𝑁 𝑚 + 𝑁 𝑒 

× 0 . 1 . 

or each vertex, we projected the timeseries along the dipole direction

o explain the most variance using singular value decomposition (SVD)

 Baselice et al., 2019; Sorrentino et al., 2020 ). Then we normalized it to

ave mean 0 and SD 1 to focus on the temporal changes in each vertex

nduced by the whole-brain propagating activities. 

https://vbmeg.atr.jp/
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.5. Estimating repetitive spatiotemporal patterns 

To reveal the whole-brain propagating activities, we extracted the

epetitive spatiotemporal patterns from each subjects’ source current

y BigSTeP ( Takeda et al., 2019a ). BigSTeP was originally developed

o estimate common and subject-specific spatiotemporal patterns from

any subjects’ resting-state data. It is also useful for long data if they

re divided into short segments, which are regarded as subjects in the

igSTeP framework. In this study, we divided the source currents into

0-s segments. Each segment was assumed to contain several unknown

patiotemporal patterns at unknown onsets (Supplementary material,

Fig. 1), expressed as 

 𝑠 ( 𝑣, 𝑡 ) = 

𝐾 ∑
𝑘 =1 

𝑁 ∑
𝑛 =1 

𝑝 𝑘 ( 𝑣, 𝑡 ) 𝑢 𝑠,𝑘 ( 𝑡 − 𝑛 + 1) + 𝑧 𝑠 ( 𝑣, 𝑡 ) , 

here 𝑦 𝑠 ( 𝑣, 𝑡 ) is the source current in segment 𝑠 at vertex 𝑣 and time 𝑡 , 𝐾

s the number of spatiotemporal patterns, 𝑁 is their lengths, 𝑝 𝑘 ( 𝑣, 𝑡 ) is the

 -th spatiotemporal pattern common across the segments, and 𝑧 𝑠 ( 𝑣, 𝑡 ) is
oise. 𝑢 𝑠,𝑘 ( 𝑡 ) is the onset timeseries of the 𝑘 -th spatiotemporal pattern,

xpressed as 

 𝑠,𝑘 ( 𝑡 ) = 

{ 

1 onset of 𝑘 -th spatiotemporal pattern 

0 otherwise . 

iven number 𝐾 and length 𝑁 of the spatiotemporal patterns, BigSTeP

stimated spatiotemporal patterns 𝑝 𝑘 ( 𝑣, 𝑡 ) and their onsets 𝑢 𝑠,𝑘 ( 𝑡 ) from

ource current 𝑦 𝑠 ( 𝑣, 𝑡 ) . 
In the actual application, we reduced the computation cost by using

VD. We applied SVD to the source current, extracted the components

aving a cumulative contribution ratio of 0.99, and multiplied the ex-

racted components by their singular values to keep their amplitude in-

ormation. We applied BigSTeP to the dimension-reduced source current

nd estimated the onsets of the spatiotemporal patterns. Then from the

riginal source current, we estimated the spatiotemporal patterns using

he onsets. 

The number and length of the spatiotemporal patterns were deter-

ined based on their reproducibility between the two runs. From the

ource current of each run, we separately estimated the spatiotempo-

al patterns. Then we vectorized the spatiotemporal patterns and calcu-

ated their correlation coefficient between the runs. This was repeated

y changing the number from 1 to 4 and the length from 0.1 to 0.5 s.

inally, we selected the best number and length pair that achieved the

ighest correlation coefficient. 

.6. Examining temporal frequency of spatiotemporal patterns 

To examine the temporal frequency of the estimated spatiotemporal

atterns, we decomposed them into delta (0.4–4 Hz), theta (4–8 Hz),

lpha (8–13 Hz), beta (13–30 Hz), and gamma (30–50 Hz) band com-

onents and calculated their powers. First, we decomposed the prepro-

essed MEG and EEG data into these bands using FIR filters. Second,

e converted the filtered MEG and EEG data into source currents by

pplying the inverse filter and the normalization used in the source cur-

ent estimation described above. Third, from the currents in each band,

e estimated the spatiotemporal patterns using the estimated onsets.

inally, we calculated their powers by averaging the squares of the pat-

erns across the times and vertices. 

We checked the validity of this decomposing procedure by compar-

ng the sum of the decomposed patterns with the original one. Their

orrelation coefficients were sufficiently high (0.998 ± 0.001), indicat-

ng that it worked well. 

To check whether the powers were larger than those generated from

he fluctuations that were not time-locked to the estimated onsets, we

ompared the powers with surrogates. The surrogate powers were gen-

rated by randomly shuffling the inter-onset intervals (IOIs) of the esti-

ated onsets and estimating the spatiotemporal patterns using the IOI-

huffled onsets. 
3 
.7. Evaluating spatial similarity between spatiotemporal patterns and 

SNs 

To evaluate the spatial similarity between the spatiotemporal pat-

erns and the fMRI-RSNs, we calculated their correlation coefficients.

e downloaded the spatial patterns of the fMRI-RSNs from BrainMap

CA ( http://brainmap.org/icns/ ). For each frequency component of the

atterns, we calculated the correlation coefficients between the patterns’

bsolute values at each time and the spatial patterns of the RSNs. 

Perhaps a high correlation coefficient is attributable to the artifacts

hat occur when estimating the source current, such as the signal leak-

ge ( Brookes et al., 2012; Colclough et al., 2015; Sato et al., 2018 ). To

emove this possibility, we compared the correlation coefficient with

urrogates that also underwent the same artifacts. We generated 1,000

urrogate values for the correlation coefficient by estimating the pat-

erns from the source current using the IOI-shuffled onsets. The 𝑝 -value

as estimated by 

 = 

#{ 𝑥 𝑔 ≥ 𝑥, 𝑔 = 1 ∶ 1 , 000} 
1 , 000 

, (1)

here 𝑥 and 𝑥 𝑔 are respectively the original and 𝑔-th surrogate values. 

This is the multiple comparison problem, which we solved by con-

rolling the false discovery rate (FDR). FDR manages the expected pro-

ortion of the false positive findings among all the rejected null hy-

otheses ( Benjamini and Hochberg, 1995 ). We estimated the 𝑞-values

y Storey and Tibshirani’s method ( Storey and Tibshirani, 2003 ). From

he distribution of the 𝑝 -values, we first estimated the proportion of null

 -values 𝜋0 , and based on 𝜋0 we converted the 𝑝 -values to 𝑞-values. The

DRs were controlled at 0.01. 

To summarize the results of all the subjects, we examined how fre-

uently high correlation coefficients were observed. For each frequency

and and RSN, we calculated the proportion of the significant corre-

ation coefficients among all the times, patterns, and subjects. Since a

 -value less than 0.01 was considered significant, the chance level was

.01. 

.8. Simulating resting-state brain activities 

We conducted a simulation test to examine the generating mech-

nism of the spatiotemporal patterns. Here we asked how the propa-

ating activities along the human brain’s anatomical connectivity form

patiotemporal patterns. 

We simulated propagating brain activity using a whole-brain net-

ork model of Kuramoto oscillators ( Cabral et al., 2014; Gollo et al.,

017; Pang et al., 2021 ). We parceled the cortex into 360 regions of in-

erest (ROIs) according to the HCP-MMP1.0 atlas ( Glasser et al., 2016 ).

he phase dynamics of a ROI is expressed by 

𝑑𝜃𝑎 

𝑑𝑡 
= 𝜔 𝑎 + 𝜅

360 ∑
𝑏 =1 

𝑬 ( 𝑎, 𝑏 ) sin 
(
𝜃𝑏 
(
𝑡 − 𝜏𝑎𝑏 

)
− 𝜃𝑎 ( 𝑡 ) 

)
, (2)

here 𝜃𝑎 is the phase of ROI 𝑎 , 𝜔 𝑎 is the natural frequency of

OI 𝑎 , 𝜅 is the global coupling strength, 𝑬 ( 𝑎, 𝑏 ) is the connectivity

trength, and 𝜏𝑎𝑏 is the delay between ROIs 𝑎 and 𝑏 . In this model,

e focused on the phase dynamics of limit-cycle oscillators coupled

cross the ROIs while ignoring their amplitudes. We determined 𝜔 𝑎 ,

 ( 𝑎, 𝑏 ) , and 𝜏𝑎𝑏 based on the anatomical connectivity derived from

any subjects’ diffusion MRIs (dMRIs) ( Rosen and Halgren, 2021 ).

e downloaded the logarithm of connectivity 𝑓 𝑎𝑏 and fiber length

 𝑎𝑏 from https://zenodo.org/record/4060485#.YKRHwS2MsWo . Con-

ectivity strength 𝑬 ( 𝑎, 𝑏 ) was obtained by calculating the antilogarithm

f 𝑓 𝑎𝑏 and normalizing the resultant values so that their maximum value

ecame 1. Based on Pang et al. (2021) , natural frequency 𝜔 𝑎 was deter-

ined by 

 𝑎 = 𝜔 𝑚𝑎𝑥 − ( 𝜔 𝑚𝑎𝑥 − 𝜔 𝑚𝑖𝑛 ) 
( 

𝑠 𝑎 − 𝑠 𝑚𝑖𝑛 

𝑠 − 𝑠 

) 2 
, 
𝑚𝑎𝑥 𝑚𝑖𝑛 

http://brainmap.org/icns/
https://zenodo.org/record/4060485\043.YKRHwS2MsWo
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Fig. 1. Sample reproducibility of spatiotemporal patterns for each pair of hy- 

perparameters: number and length of spatiotemporal patterns. Correlation co- 

efficients of estimated spatiotemporal patterns between two runs are shown for 

subject 10. Based on this result, the number and length of spatiotemporal pat- 

terns were respectively determined to be 1 and 0.1 s for this subject. 

w  

𝑠

a  

4  

s  

g  

2  

v  

m

 

a  

a  

d  

b

 

c

𝑠  

T  

c  

t  

l  

t

 

b  

p  

q  

u

2

a

 

p  

a  

s

 

m  

b  

h  

i  

d  

r  

t  

b

 

t  

i  

u  

t  

a  

h  

t

2

 

𝜅  

n  

a

 

i  

p  

(  

b  

a  

t  

t

 

t  

c  

e  

m

2

 

t  

p  

1  

P

𝑙

w  

T  

e

2

 

t  

c  

h l . 

T  

h  

i

3

3

 

c  

i  
here 𝑠 𝑎 is the ROI’s connectivity strength given by 𝑠 𝑎 = 

∑360 
𝑏 

𝑬 ( 𝑎, 𝑏 ) .
 𝑚𝑖𝑛 and 𝑠 𝑚𝑎𝑥 are respectively the minimum and maximum values of 𝑠 𝑎 
cross the ROIs. The frequency limits, 𝜔 𝑚𝑖𝑛 and 𝜔 𝑚𝑎𝑥 , were set to 8 and

0 Hz because transcranial magnetic stimulation (TMS) studies have

uggested that natural frequencies can be found at the alpha, beta, and

amma bands in the human brain ( Okazaki et al., 2021; Rosanova et al.,

009 ). Delay 𝜏𝑎𝑏 was calculated by 𝜏𝑎𝑏 = 𝑑 𝑎𝑏 ∕ 𝑣 , where 𝑣 is the conduction

elocity. We set 𝜅 to 0, 20, …, 180, or 200 and 𝑣 to 2, 4, …, 18, or 20

/s. 

For each 𝜅 and 𝑣 pair, we simulated the brain activity for 50 s using

n Euler scheme with 0.1 ms time steps from the random initial values

nd discarded the first 20 s. The simulation was iterated 10 times with

ifferent initial values. Thus, we obtained 30 ( = 50 - 20) s × 10 simulated

rain activities for each 𝜅 and 𝑣 pair. 

To characterize the behavior of the simulated brain activities, we

alculated the synchrony degrees ( Cabral et al., 2014 ): 

 ( 𝑡 ) = 

||||||
1 

360 

360 ∑
𝑎 =1 

exp ( 𝑖𝜃𝑎 ( 𝑡 )) 
||||||. (3)

his value becomes 1 if the phases are identical across the ROIs and

lose to 0 if uniformly distributed. From the 30-s simulated brain ac-

ivities, we calculated the SD of 𝑠 ( 𝑡 ) across the times to capture how

argely the synchrony degree fluctuated in time and quantified the sys-

em’s metastability level ( Cabral et al., 2014 ). 

We also examined the width of the frequency band in the simulated

rain activity. For each ROI, we detected the peak frequency from the

ower spectrum of sin ( 𝜃𝑎 ) . Then from the distribution of the peak fre-

uencies, we calculated its entropy, which becomes large when the sim-

lated brain activity was broadband. 

.9. Estimating repetitive spatiotemporal patterns from simulated brain 

ctivities 

For each 𝜅 and 𝑣 pair, we estimated the repetitive spatiotemporal

atterns from the simulated brain activities using BigSTeP. The number

nd length of the patterns were set to 1 and 0.1 s based on the parameters

elected for subject 10 ( Fig. 1 ). 

We evaluated the similarity of the estimated patterns with those esti-

ated from the real data. For this purpose, we characterized the patterns
4 
y their amplitudes because the patterns estimated from the real data

ad a tendency common across the subjects in their amplitudes but not

n their peak times (Supplementary material, SFig. 2). For the simulated

ata, we averaged the patterns’ absolute values across the times. For the

eal data, we averaged their absolute values across the times and ver-

ices within each ROI. Then we calculated their correlation coefficients

etween the simulated and real data. 

Perhaps a high correlation coefficient is attributable to the artifacts

hat occur when estimating the source current. To remove this possibil-

ty, we compared the correlation coefficient with surrogates that also

nderwent the same artifacts. We generated 1,000 surrogate values for

he correlation coefficients by shuffling the ROIs in the simulated brain

ctivity while keeping the correspondence between the left and right

emispheres. The 𝑝 -value was estimated by Eq. (1) . The 𝑝 -values less

han 0.001 were considered significant. 

.10. Examining temporal frequency of spatiotemporal patterns 

In the following analyses, we used the simulated brain activities at

= 80 and 𝑣 = 10 m/s because they included multiple frequency compo-

ents and the patterns’ amplitudes estimated from the simulated brain

ctivities resembled those estimated from the real data. 

We examined the temporal frequency of the spatiotemporal patterns

n the same way as with the real data (Section 2.6). First, we decom-

osed simulated brain activities sin ( 𝜃𝑎 ) into the delta (0.4–4 Hz), theta

4–8 Hz), alpha (8–13 Hz), beta (13–30 Hz), and gamma (30–50 Hz)

and components using FIR filters. Second, from the simulated brain

ctivities in each band, we estimated the spatiotemporal patterns using

he estimated onsets. Finally, we calculated their powers by averaging

he squares of the patterns across the times and the ROIs. 

To check whether the powers were larger than those generated from

he fluctuations that were not time-locked to the estimated onsets, we

ompared the powers with surrogates. The surrogate powers were gen-

rated by randomly shuffling the IOIs of the estimated onsets and esti-

ating the spatiotemporal patterns using the IOI-shuffled onsets. 

.11. Examining generating mechanism of spatiotemporal pattern 

To examine how the spatiotemporal pattern was generated from

he simulated brain activity ( 𝜅 = 80 and 𝑣 = 10 m/s), we calculated the

hase-locking factors (PLFs) ( Naruse et al., 2010; Tallon-Baudry et al.,

996 ) from the simulated brain activity after the estimated onsets. The

LFs were calculated by 

 𝑎 ( 𝑡 ) = 

||||||
1 
𝑂 

𝑂 ∑
𝑜 =1 

exp ( 𝑖𝜃𝑎 ( 𝑡 − 𝜏𝑜 + 1)) 
||||||, 

here 𝑂 is the number of estimated onsets and 𝜏𝑜 is the 𝑜 -th onset time.

his value becomes 1 if phase 𝜃𝑎 ( 𝑡 ) was completely time-locked to the

stimated onsets and close to 0 if it was time-unlocked. 

.12. Data and code availability 

The processed data, such as the spatiotemporal pat-

erns, are available from the authors upon request. The

odes for estimating the source currents are available from

ttps://vbmeg.atr.jp/docs/v22/static/vbmeg2_resting_state_tutorial.htm

he codes for performing BigSTeP are available from

ttps://bicr.atr.jp//~takeda/BigSTeP.html . The codes for simulat-

ng the brain activities are available from the authors upon request. 

. Results 

.1. Estimating repetitive spatiotemporal patterns 

From the resting-state MEG and EEG data, we estimated the source

urrents by the LCMV beamformer ( Van Veen et al., 1997 ) and normal-

zed them to have mean 0 and SD 1 for each vertex. We verified the

https://vbmeg.atr.jp/docs/v22/static/vbmeg2_resting_state_tutorial.html
https://bicr.atr.jp//~takeda/BigSTeP.html
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Fig. 2. Sample spatiotemporal pattern. Absolute values of subject 10’s spatiotemporal pattern (patterns 1) is shown. Activities over 0.1 of their maximum value are 

shown. 
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stimated source currents by displaying the spatial distributions of their

owers (Supplementary material, SFig. 3B). 

To extract the repetitive spatiotemporal patterns, we applied Big-

TeP ( Takeda et al., 2019a ) to the source currents for each subject.

he number and length of the patterns were determined based on the

eproducibility of the estimated patterns. We separately estimated the

atterns from the two runs, vectorized them, and calculated their corre-

ation coefficients between runs. Fig. 1 shows the resultant correlation

oefficients of subject 10. When the number and length of the patterns

ere set to 1 and 0.1 s, respectively, the correlation coefficients exhib-

ted a maximum value of 0.94. Therefore, we set the number and length

f the patterns to these values for this subject. The correlation coeffi-

ients of all the subjects are shown in Supplementary material, SFig. 4.

or all the subjects, the numbers were set to 1–3 and the lengths were

et to 0.1–0.3 s. 

Fig. 2 shows the estimated spatiotemporal pattern of subject 10 (pat-

ern 1). Within 0.1 s, the activities globally and consecutively changed

ith time (Video 17). All the subjects’ spatiotemporal patterns are

hown in Videos 1–19. The numbers of onsets per second were 6.45 ±
.27, indicating that on average each pattern appeared about six times

 second. 

.2. Spatiotemporal patterns were broadband 

To examine which frequency component the estimated spatiotem-

oral patterns consisted of, we decomposed the patterns into the delta

0.4–4 Hz), theta (4–8 Hz), alpha (8–13 Hz), beta (13–30 Hz), and

amma (30–50 Hz) band components, and calculated their powers. To

heck whether the powers were larger than those generated from the

uctuations that were not time-locked to the estimated onsets, we com-

ared the powers with the surrogates generated by the IOI-shuffled on-

ets. 

Fig. 3 A shows the resultant powers averaged across the times, ver-

ices, patterns, and subjects. For all the bands, the original powers (blue

ine) were significantly larger than the surrogate ones (red line), indicat-

ng that for all the bands the spatiotemporal patterns had larger pow-

rs than the inherent fluctuations in the source currents. That is, the

atterns were broadband. Fig. 3 B shows the spatial distributions of the

owers averaged across the times, patterns, and subjects. The powers

ere large around the cingulate cortex. A similar result with Fig. 3 was

btained from other hyperparameter values (Supplementary material,

Fig. 5), indicating its robustness. 

.3. RSNs in spatiotemporal patterns 

We next evaluated the spatial similarity between the spatiotemporal

atterns and the fMRI-RSNs, which have been extensively examined in
5 
uman resting-state studies ( Biswal et al., 1995; Fox et al., 2005; Raichle

t al., 2001; Smith et al., 2009 ). For each frequency component of the

atterns, we calculated the correlation coefficients between the patterns’

bsolute values at each time and the spatial patterns of the RSNs. 

Fig. 4 A shows the correlation coefficients for pattern 1 (subject 10)

hown in Fig. 2 . In each frequency component, pattern 1 transiently ex-

ibited spatial patterns that significantly resembled the RSNs ( 𝑞 < 0 . 01 ).
or example, the beta component exhibited spatial patterns that highly

orrelated with the visual 1, default mode and sensorimotor networks

 𝑞 < 0 . 01 ). Note that the correlation coefficients seem to oscillate twice

round each frequency band because they were calculated from the pat-

erns’ absolute values. 

We summarized the results of all the subjects by examining how fre-

uently high correlation coefficients were observed. Fig. 4 B shows the

roportions of the high correlation coefficients ( 𝑝 < 0 . 01 ) among all the

imes, patterns, and subjects. The theta, alpha and beta components fre-

uently exhibited spatial patterns that highly correlated with the default

ode and the sensorimotor networks. A similar result with Fig. 4 B was

btained from other hyperparameter values (Supplementary material,

Fig. 6), indicating its robustness. 

These results suggest that multiple fMRI-RSNs were embedded in the

ultiple frequency components of the spatiotemporal patterns. 

.4. Simulation test 

Using simulated brain activities, we examined how propagating ac-

ivities along the anatomical connectivity formed such broadband spa-

iotemporal patterns. We assumed a whole-brain network model of Ku-

amoto oscillators [ Eq. (2) ] ( Cabral et al., 2014; Gollo et al., 2017;

ang et al., 2021 ). The natural frequency, coupling strength, and delay

etween the ROIs were determined based on the anatomical connectiv-

ty. 

We first characterized the behavior of the simulated brain activities

y the synchrony degree [ Eq. (3) ] ( Cabral et al., 2014 ), which quantifies

he phase consistency across the ROIs. Fig. 5 A shows the temporal means

left) and SDs (right) of the synchrony degrees. They changed depending

n the following parameters: global coupling strength [ 𝜅 in Eq. (2) ] and

onduction velocity, which determined the delays across the ROIs [ 𝜏𝑎𝑏 
n Eq. (2) ]. The SD ( Fig. 5 A, right) captures how largely the synchrony

egrees fluctuated in time and indicates the system’s metastability level

 Cabral et al., 2014 ). 

We also examined the width of the frequency band in the simu-

ated brain activity by calculating the entropy of their peak frequen-

ies ( Fig. 5 B). The entropies decreased as the global coupling strength

ncreased ( Fig. 5 B), indicating that the bandwidth narrowed as the cou-

ling strength increased. 
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Fig. 3. Temporal frequency of spatiotemporal pat- 

terns. ( A ) Power of spatiotemporal patterns in each 

frequency component. Powers averaged across times, 

vertices, patterns, and subjects are shown. Error bars 

of red line represent SDs of surrogate powers across 

1,000 repeats. ( B ) Spatial distribution of spatiotem- 

poral patterns’ powers in each frequency component. 

Powers were averaged across times, patterns, and sub- 

jects. For each frequency component, powers over 0.1 

of their maximum value are shown. 
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For each parameter pair, we estimated the repetitive spatiotempo-

al patterns from the simulated brain activities. Although the simulated

rain activities had many differences from the real ones owing to the

odel’s simplicity, we expected that the patterns estimated from the

imulated and real data had common characteristics if both reflected

he propagating activities along the human brains’ connectivity. To test

his expectation, we compared the patterns of the simulated and real

ata. Because the patterns that were estimated from the real data shared

 tendency in their amplitudes across the subjects ( Fig. 3 B and Sup-

lementary material, SFig. 2), we characterized the patterns by their

mplitudes. Fig. 5 C shows the correlation coefficients of the patterns’

mplitudes between the simulated and real data. In a wide range of pa-

ameters, the correlation coefficients were significantly high ( 𝑝 < 0 . 001 ),
uggesting the validity of our expectation. The correlation coefficients

specially tended to be high as the metastability level increased (their

orrelation coefficient was 0.53, 𝑝 < 0 . 001 ) ( Fig. 5 A right and C). Indeed,

here the global coupling strength = 80 and the conduction velocity

 10 m/s, which exhibited a high metastability level ( Fig. 5 A, right),

he pattern estimated from the simulated data had a large amplitude

round the cingulate cortex ( Fig. 5 D) like those estimated from the real

ata ( Fig. 3 B). These results suggest that the patterns estimated from

he real data reflected the propagating activities in the metastable brain

ynamics. 

To examine the generating mechanism of the broadband spatiotem-

oral patterns estimated from real data ( Fig. 3 A), we chose the simu-
6 
ated brain activities at global coupling strength = 80 and conduction

elocity = 10 m/s. At these parameter values, the simulated brain activi-

ies included multiple frequency components ( Fig. 5 B) and the patterns’

mplitudes were similar between the simulated and real data ( Fig. 5 C).

Fig. 6 A shows the power of the spatiotemporal patterns estimated

rom the simulated brain activities at each frequency band. For the al-

ha, beta, and gamma bands, they were significantly larger than the

urrogates (red line), indicating that for these bands the spatiotemporal

atterns had larger powers than the inherent fluctuations in the simu-

ated brain activities. That is, the patterns consisted of alpha, beta, and

amma band components. 

We further chose three ROIs (R_V1_ROI, L_10d_ROI, and

_v23ab_ROI) at which the patterns had large amplitudes in the

lpha, beta, and gamma bands, respectively. Fig. 6 B shows the patterns

t these ROIs. Their amplitudes were significantly larger than the sur-

ogate ones generated by the IOI-shuffled onsets. To identify the factor

esponsible for the large amplitudes, we displayed phases 𝜃𝑎 ( 𝑡 ) after

he estimated onsets in Fig. 6 C. They seem consistent across the onsets

hen the pattern exhibited large amplitudes (e.g., around 0.08 s for

_V1_ROI, Fig. 6 B and C). Indeed, the PLFs, which quantify the phase

onsistencies across the onsets, became high at these times ( Fig. 6 B

nd D). These results indicate that the phase consistency across the

nsets increased the pattern’s amplitudes as with the stimulus-triggered

verages ( Makeig et al., 2002 ). We believe that the propagating activity

ligned the phases of the alpha, beta, and gamma band oscillators at
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Fig. 4. Spatial similarity between spatiotemporal patterns and fMRI-RSNs. ( A ) Sample correlation coefficients between pattern 1 (subject 10) and fMRI-RSNs. 

RSNs are shown which exhibited significant ( 𝑞 < 0 . 01 ) and high ( 𝑟 > 0 . 3 ) correlation coefficients. ( B ) Frequency of high correlation coefficients. Proportions of high 

correlation coefficients ( 𝑝 < 0 . 01 ) among all the times, patterns, and subjects are shown. Chance level was 0.01. 
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hese ROIs, and their phase consistencies across the onsets increased,

esulting in large amplitudes at these ROIs and bands. 

. Discussion 

In this study, we identified the repetitive spatiotemporal patterns

rom the resting-state brain activities estimated from MEG and EEG

ata. The patterns consisted of multiple frequency components, each

f which transiently exhibited the frequency-specific RSNs. The simu-

ation test suggests that the patterns reflected the phase alignment of

he multiple frequency oscillators induced by the propagating activities

long the anatomical connectivity. These results revealed whole-brain

ropagating activities that transiently exhibited multiple fMRI-RSNs in

heir multiple frequency components. 

.1. Reliability of spatiotemporal patterns 

Using BigSTeP, we estimated the repetitive spatiotemporal patterns

rom the resting-state brain activities. Although perhaps such repetitive

atterns do not exist and those shown in our study ( Fig. 2 ) simply reflect
7 
he random fluctuations inherent in the resting-state brain activities, we

elieve this possibility is unlikely for the following three reasons. First,

any experimental ( Han et al., 2008; Ikegaya et al., 2004; Ji and Wilson,

007; Matsui et al., 2016; Wilson and McNaughton, 1994 ) and theoret-

cal ( Izhikevich et al., 2004; Roberts et al., 2019; Teramae et al., 2012 )

tudies have reported the emergence of repetitive spatiotemporal pat-

erns in resting-state brain activities. Therefore, it is reasonable that our

ata also exhibited such patterns that were extracted by BigSTeP. Sec-

nd, the estimated patterns had high reproducibility between the two

uns ( Fig. 1 and Supplementary material, SFig. 4). If the patterns re-

ected random fluctuations, the reproducibility would be much lower.

inally, the powers of the patterns were significantly larger than the sur-

ogate ones, which were generated using IOI-shuffled onsets ( Fig. 3 A).

his result indicates that the patterns were not generated from fluctua-

ions time-unlocked to the estimated onsets. 

.2. Generating mechanism of spatiotemporal patterns 

To gain insight into the generating mechanism of broadband spa-

iotemporal patterns ( Fig. 3 A), we conducted a simulation test ( Figs. 5
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Fig. 5. Behavior of simulated brain activities. ( A ) Synchrony degree. Left and right figures show temporal mean and SD of synchrony degrees. ( B ) Entropy of peak 

frequencies. ( C ) Similarity of spatiotemporal patterns estimated from simulated and real data. Correlation coefficients of patterns’ amplitudes are shown between 

simulated and real data. Correlation coefficients were averaged across iterations. ( D ) Amplitude of sample pattern estimated from simulated data at global coupling 

strength = 80 and conduction velocity = 10 m/s. 

a  

t  

c  

t  

t

 

r  

r  

p  

u  

a  

o  

l  

a  

a  

t

 

m  

m  

d  

c  

p  

o  

2  

fi  

b

 

p  

w  

e  

R  

c  

(

4

h

 

h  

n  

i  

t  

E  

f  

s  

m  

t

 

a  

i  

s  

t  

c  

a  

e  

r  
nd 6 ). Using the whole-brain network model of the Kuramoto oscilla-

ors, we examined how the propagating activity along the anatomical

onnectivity formed a broadband spatiotemporal pattern. It was shown

hat the phase consistency across the estimated onsets increased the pat-

ern’s amplitudes in the multiple frequency bands ( Fig. 6 B and D). 

About two decades ago, Makeig et al. (2002) showed that event-

elated potentials were mainly generated by stimulus-induced phase

esetting of ongoing rhythms. More specifically, the stimulus-induced

ropagating activities modulated the phases of oscillators to fixed val-

es at fixed times after the stimulus onsets, and the stimulus-triggered

veraging procedure enhanced such stimulus-locked phases. Likewise in

ur case, the internally-induced propagating activities probably modu-

ated the phases of the multiple frequency oscillators to fixed values

t fixed times after the estimated onsets, and their phase consistencies

cross the onsets increased, resulting in broadband spatiotemporal pat-

erns ( Fig. 3 A). 

On the other hand, the similarity of the patterns’ amplitudes esti-

ated from the simulated and real data tended to be higher as the

etastability level increased ( Fig. 5 A right and C). Metastability is a

ynamical phenomenon, in which the system’s state spontaneously cy-

les between multiple weakly attracting states ( Heitmann and Breaks-

ear, 2018 ; Sase and Kitajo, 2021 ), and might account for the dynamics

f spontaneous brain activities ( Roberts et al., 2019; Sase and Kitajo,

021 ). Our result suggests that the spatiotemporal patterns reflected the

xed paths that the states repeatedly went through in the metastable

rain dynamics. 

In this simulation test, we used the simple model and focused on the

hase dynamics of limit-cycle oscillators coupled across the 360 ROIs

hile ignoring their amplitudes. On the other hand, more detailed mod-
 h

8 
ls have been proposed, such as the neural mass model ( Jansen and

it, 1995 ). Adopting such detailed models might reproduce various

haracteristics of spatiotemporal patterns, such as the power spectrum

 Fig. 3 A). 

.3. Relationship between neuronal propagating activities and 

emodynamic RSNs 

Matsui et al. (2016) simultaneously recorded neuronal calcium and

emodynamic signals from mouse cortices and found that the hemody-

amic RSNs were embedded in the phases of neuronal propagating activ-

ties. Our results extended this finding for human subjects. We revealed

he whole-brain propagating activities from the resting-state MEG and

EG data. They transiently exhibited multiple RSNs in their multiple

requency components ( Fig. 4 ). Human resting-state fMRIs have been

hown to include various RSNs ( Smith et al., 2009 ). Such variability

ay be partially attributable to the various frequency components in

he neuronal propagating activities. 

Connectome harmonics, which is the Laplacian eigenvectors of the

natomical connectivity derived from dMRI, characterizes how activity

s diffused along the connectivity. Connectome harmonics resembles the

patial patterns of the fMRI-RSNs ( Atasoy et al., 2016 ), suggesting that

he neuronal propagating activities along the anatomical connectivity

ontribute to fMRI-RSNs. In our study, we showed that the propagating

ctivities estimated from the resting-state MEG and EEG data transiently

xhibited spatial patterns resembling fMRI-RSNs ( Fig. 4 ). Therefore, our

esults demonstrated the validity of the suggestion from connectome

armonics. 
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Fig. 6. Detailed properties of simulated brain activities at global coupling strength = 80 and conduction velocity = 10 m/s. ( A ) Power of spatiotemporal patterns 

estimated from simulated brain activities. Powers averaged across times and iterations are shown for each frequency component. Error bars of red line represent 

SDs of surrogate powers across 1,000 repeats. ( B ) Sample pattern at three ROIs (R_V1_ROI, L_10d_ROI, and R_v23ab_ROI), which respectively included large alpha, 

beta, and gamma band components. Red lines and areas show means and SDs of surrogate patterns across 1,000 repeats. ( C ) Phases after estimated onsets. ( D ) 

Phase-locking factors (PLFs). Red lines and areas show means and SDs of surrogate PLFs across 1,000 repeats. 
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.4. Necessity to use both MEG and EEG data 

Previous human EEG studies suggested the existence of whole-brain

ropagating activities in a resting-state ( Ito et al., 2005; 2007; Massi-

ini et al., 2004 ). However, because these works did not estimate the

ource currents, their detailed locations are unclear. Generally speak-

ng, estimating source currents only from EEG is difficult owing to its

ow spatial resolution. In this study, we reduced this difficulty by in-

egrating MEG with the EEG data. Because these measurements have

ifferent sensitivities to source currents, integrating them alleviates the

ll-posed nature of MEG/EEG source imaging ( Takeda et al., 2019b ).

ndeed, we obtained reliable source currents (Supplementary material,

Fig. 3B) that are consistent with a previous MEG study ( Niso et al.,

019 ). 

Furthermore, the MEG and EEG data almost equally contributed to

enerating the spatiotemporal patterns ( Fig. 3 A). This also indicates the

ecessity of using both MEG and EEG data to identify the whole-brain

ropagating activities in the source space. 
9 
.5. Relation to other resting-state MEG/EEG studies 

Using cluster analyses and hidden Markov models (HMMs),

EG/EEG studies have characterized resting-state MEG/EEG data by

egmenting them into a few representative states (e.g., microstates)

 Baker et al., 2014; Michel and Koenig, 2018; Pascual-Marqui et al.,

995; Vidaurre et al., 2018; Woolrich et al., 2013 ). In contrast, we esti-

ated the repetitive spatiotemporal patterns to capture the propagating

ctivities. If an activity propagates across different regions (e.g., from

isual to motor cortices), its spatial pattern consecutively changes with

ime. BigSTeP can represent it with a spatiotemporal pattern while clus-

er analyses and HMMs reduce it to a state or a state transition. There-

ore, BigSTeP is suitable for our purpose. 

The spatiotemporal patterns included multiple frequency compo-

ents ( Fig. 3 A), indicating that the phases were time-locked across the

requencies in the patterns. On the other hand, MEG/EEG studies re-

orted cross-frequency phase synchronization ( Baselice et al., 2019 ;

alva and Palva, 2018 ; Sorrentino et al., 2020 ), where the phases of
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 frequency band are time-locked to those of another frequency band.

ur result suggests that cross-frequency phase synchronization is at least

artially attributable to whole-brain propagating activities. 

The spatiotemporal patterns transiently exhibited multiple fMRI-

SNs in their multiple frequency components. For example, the alpha

omponent exhibited the default mode and sensorimotor networks, and

he beta component exhibited sensorimotor networks ( Fig. 4 ). This re-

ult is consistent with a previous EEG-fMRI study that examined the

orrelation between the fluctuation of fMRI-RSNs and the concurrent

EG powers ( Mantini et al., 2007 ). They found that the DMN fluctua-

ion highly correlated with the EEG powers in the alpha and beta bands

nd the sensorimotor network’s fluctuation highly correlated with the

EG power in the beta band. 

.6. Functional role of whole-brain propagating activities 

The existence of multiple frequency components and RSNs in a spa-

iotemporal pattern indicates that they appeared in a time-locked way,

mplying the information transmission across these activities. This sug-

ests that the patterns reflect a process that integrates the information

istributed over the frequencies and networks to generate conscious-

ess. Indeed, the patterns’ lengths (0.1–0.3 s) were almost consistent

ith a suggested timescale of consciousness (around 0.2 s) ( Deco et al.,

019 ), and the patterns had large powers around the posterior cingu-

ate cortex ( Fig. 3 B), whose activities reduced in unconscious states

 Dehaene and Changeux, 2011 ). Furthermore, propagating activities in

wake states were shown to contribute to cognitive functions ( Davis

t al., 2020; Zhang et al., 2018 ). Therefore, further investigation of the

hole-brain propagating activities may elucidate the mechanism of con-

ciousness. 
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