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Repetitive propagating activities in resting-state brain activities have been widely observed in various species
and regions. Because they resemble the preceding brain activities during tasks, they are assumed to reflect past
experiences embedded in neuronal circuits. “Whole-brain” propagating activities may also reflect a process that
integrates information distributed over the entire brain, such as visual and motor information. Here we reveal
whole-brain propagating activities from human resting-state magnetoencephalography (MEG) and electroen-
cephalography (EEG) data. We simultaneously recorded the MEGs and EEGs and estimated the source currents
from both measurements. Then using our recently proposed algorithm, we extracted repetitive spatiotemporal
patterns from the source currents. The estimated patterns consisted of multiple frequency components, each of
which transiently exhibited the frequency-specific resting-state networks (RSNs) of functional MRIs (fMRIs), such
as the default mode and sensorimotor networks. A simulation test suggested that the spatiotemporal patterns re-
flected the phase alignment of the multiple frequency oscillators induced by the propagating activities along
the anatomical connectivity. These results argue that whole-brain propagating activities transiently exhibited
multiple RSNs in their multiple frequency components, suggesting that they reflected a process to integrate the
information distributed over the frequencies and networks.

1. Introduction

Over the last two decades, resting-state (or spontaneous) brain activ-
ities have attracted much interest in the neuroscience community. They
are shown to be not random; they are structured in space and time (e.g.,
Zalesky et al., 2014).

In nonhuman studies, repetitive spatiotemporal patterns in resting-
state brain activities have been widely observed in various species and
regions, such as rat and mouse hippocampal place cells (Dragoi and
Tonegawa, 2011; Ji and Wilson, 2007; Wilson and McNaughton, 1994)
and rat and cat visual cortices (Han et al., 2008; Ikegaya et al., 2004; Ji
and Wilson, 2007). Theoretical studies have argued that such patterns
are formed by propagating activities along strong anatomical connec-
tions (Izhikevich et al., 2004; Teramae et al., 2012). Because the pat-
terns resemble the preceding brain activities during tasks, they proba-
bly reflect past experiences embedded in neuronal circuits (Han et al.,
2008; Ji and Wilson, 2007; Wilson and McNaughton, 1994). On the
other hand, “whole-brain” propagating activities were also observed in
mice (Matsui et al., 2016), perhaps reflecting a process that integrates
the information distributed over the entire brain, such as visual and mo-
tor information.

In this paper, we define propagating activity and spatiotemporal pat-
terns as follows. Propagating activity is literally the brain activity that
circulates through anatomical connections. Spatiotemporal patterns are
observations represented by the two-dimensional matrices of space x
time (Supplementary material, SFig. 1). Propagating activities gener-
ate spatiotemporal patterns in brain measurement data, such as calcium
imaging. Therefore, propagating activity and spatiotemporal patterns
share a cause and effect relationship.

Human studies have also examined propagating activities from
resting-state functional MRIs (fMRIs). Using a template matching algo-
rithm, Majeed et al. (2011) identified repetitive spatiotemporal patterns
that consist of an alteration between the activation of the default mode
network (DMN) and the task-positive network. We also extracted repet-
itive spatiotemporal patterns from over 1,000 subjects’ resting-state fM-
RlIs including subjects with autism spectrum disorder (ASD) and typi-
cally developed individuals and examined the differences in the patterns
between the groups (Takeda et al., 2019a). Using temporal lag analyses,
Mitra et al. (2014), Mitra et al. (2015a,b), Mitra and Raichle (2016) ex-
tensively examined the temporal structures of propagating fMRI signals.
However, because fMRIs measure hemodynamic responses to neuronal
activities and the responses are slow, it is difficult to identify neuronal
propagating activities in the millisecond order from fMRIs.

* Corresponding author at: Computational Brain Dynamics Team, RIKEN Center for Advanced Intelligence Project, 2-2-2 Hikaridai, Seika-cho, Soraku-gun, Kyoto

619-0288, Japan.

https://doi.org/10.1016/j.neuroimage.2021.118711.

Received 9 August 2021; Received in revised form 15 October 2021; Accepted 4 November 2021

Available online 16 November 2021.

1053-8119/© 2021 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/)


https://doi.org/10.1016/j.neuroimage.2021.118711
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neuroimage
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neuroimage.2021.118711&domain=pdf
https://doi.org/10.1016/j.neuroimage.2021.118711
http://creativecommons.org/licenses/by-nc-nd/4.0/

Y. Takeda, N. Hiroe and O. Yamashita

On the other hand, human electrophysiological studies have exam-
ined propagating activities with fine temporal resolution. Electroen-
cephalography (EEG) studies suggested the existence of whole-brain
propagating activities based on sensor space analyses (Ito et al., 2005;
2007; Massimini et al., 2004). Electrocorticography (ECoG) studies re-
vealed propagating activities at the motor and temporal cortices (Muller
et al., 2018; 2016; Takahashi et al., 2011). A magnetoencephalography
(MEG) study revealed the temporal structure of alpha band (8-13 Hz)
activities using temporal lag analysis (Basti et al., 2019). However, spa-
tiotemporal patterns formed by whole-brain propagating activities re-
main hidden in human resting-state electrophysiological studies.

Conventionally, MEG/EEG studies have examined spatiotemporal
patterns that are time-locked to external stimulus onsets: event-related
fields/potentials. Such patterns provide rich information about the prop-
agating activities driven by the stimuli, such as the time and place infor-
mation of signal flows. In the case of resting-states, however, such pat-
terns are difficult to extract because resting-state data do not have overt
stimulus or response onsets; the patterns’ onsets are also unknown. To
solve this problem, we developed a method called SpatioTemporal Pat-
tern estimation (STeP) (Takeda et al., 2016). From resting-state brain ac-
tivity data, STeP simultaneously estimates repetitive spatiotemporal pat-
terns and their onsets by alternately iterating the updates of the shapes
and onsets of the patterns. More recently, we extended STeP for big data
(BigSTeP) (Takeda et al., 2019a). From many or long resting-state data,
BigSTeP estimates spatiotemporal patterns with less computation cost
than STeP.

In this study, we reveal spatiotemporal patterns generated by whole-
brain propagating activities from human resting-state MEG and EEG
data. We simultaneously recorded the MEGs and EEGs and estimated
the source currents from both measurements. Then using BigSTeP, we
extracted repetitive spatiotemporal patterns from the source currents
and examined their temporal frequencies and spatial similarities with
fMRI’s resting-state networks (RSNs). Finally, we conducted a simula-
tion test to examine how the spatiotemporal patterns were generated
from propagating activities along the anatomical connectivity. These
analyses revealed the whole-brain propagating activities, which tran-
siently exhibited multiple RSNs in their multiple frequency components,
suggesting that they reflected a process to integrate the information dis-
tributed over the frequencies and the networks.

2. Materials and methods
2.1. MEG-EEG experiment

Twelve healthy subjects [2 females, 26.8 + 7.8 (mean + standard
deviation [SD]) years old] participated in our MEG-EEG experiment. All
subjects gave written informed consent for the experimental procedures,
which were approved by the ATR Human Subject Review Committee.

They performed a resting-state task for two runs. In this task, they
fixated on a cross for 5 min.

During the task, we simultaneously recorded their MEGs and EEGs
with a whole-head, 400-channel system (210-channel Axial and 190-
channel Planar Gradiometers; PQ1400RM; Yokogawa Electric Co.,
Japan) and a whole-head, 63-channel system (BrainAmp; Brain Products
GmbH, Germany), respectively. The EEG electrodes were placed accord-
ing to the extended 10-20 system using FPz and FCz as a ground and
a reference, respectively. Electrooculograms (EOGs) were also recorded
simultaneously. The sampling frequency was 1 kHz.

2.2. MRI experiment

The subjects also participated in an MRI experiment to record their
T1-weighted images. They again gave written informed consent for the
experimental procedures, which were approved by the ATR Human Sub-
ject Review Committee.
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The T1-weighted images were recorded by three Tesla MR scanner
(MAGNETOM Trio 3T; Siemens, Germany) with the following acquisi-
tion parameters: 2250-ms repetition time; 3.06 ms echo time; 9-degrees
flip angle; 1 mm thick slices; 256x256 mm field of view; and 256x256
imaging matrix with 208 slices.

2.3. Preprocessing MEG and EEG data

To preprocess the MEG and EEG data, we used Variational Bayesian
Multimodal EncephaloGraphy (VBMEG) v2.2 (Sato et al., 2004; Takeda
et al., 2019b; Yoshioka et al., 2008), which is a MATLAB toolbox for
MEG/EEG source imaging (https://vbmeg.atr.jp/). Using reference sen-
sor data in the MEG, environmental noise was removed from the MEG
data by time-shift principal component analysis (PCA) (de Cheveigné
and Simon, 2007). The MEG and EEG data were passed through a low-
pass finite impulse response (FIR) filter with a cutoff frequency of 50
Hz, sampled at 500 Hz, and passed through a high-pass FIR filter with a
0.4-Hz cutoff frequency. The EOG artifacts were regressed out for each
sensor. Cardiac artifacts and sensor noise were removed by independent
component analysis (ICA) (Jung et al., 2001). We excluded the sensors
whose powers exceeded their mean + 10xSD across the sensors. For
the EEG data, we applied the common average reference and made the
averages of the EEG data across the sensors to 0.

2.4. Estimating source currents

From the preprocessed MEG and EEG data, we estimated the source
currents at 10,004 vertices on the cortex.

First, we made leadfield matrices for the MEG and EEG data using
VBMEG. We respectively constructed 1-shell (cerebrospinal fluid [CSF])
and 3-shell (CSF, skull, and scalp) head conductivity models for the MEG
and EEG data. Based on the models, we made leadfield matrices by solv-
ing the Maxwell equations with a boundary element method (BEM).
Here we assumed three-dimensional current dipoles parallel to the x, y,
and z axes.

Then, we estimated the source currents by a linearly constrained
minimum variance (LCMV) beamformer (Van Veen et al., 1997). For
each axis, the current was estimated by

q(v,1) = w,m(t),

where ¢(v, 1) is the current at vertex v and time ¢, w,, is the 1 X (N,, + N,)
inverse filter, N, is the number of MEG sensors, N, is the number of EEG
sensors, and m(?) is a (N,, + N,) x 1 data vector containing the MEG and
EEG data at time ¢. To accommodate the different scales between the
MEG and EEG data, the data and their leadfields were normalized by
the leadfield norms (Henson et al., 2011; Takeda et al., 2019b). The
inverse filter was obtained by

w, =[A'C 'h, 7 RTC,
where
C=C+4l.

h, is the (N,, + N,) x 1 leadfield vector containing the MEG and EEG’s
leadfields for vertex v. C is the (N,, + N,) X (N,, + N,) covariance ma-
trix computed between all sensor pairs. 1 is a regularization constant
computed by

trC

== %
N, + N,

0.1.

For each vertex, we projected the timeseries along the dipole direction
to explain the most variance using singular value decomposition (SVD)
(Baselice et al., 2019; Sorrentino et al., 2020). Then we normalized it to
have mean 0 and SD 1 to focus on the temporal changes in each vertex
induced by the whole-brain propagating activities.
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2.5. Estimating repetitive spatiotemporal patterns

To reveal the whole-brain propagating activities, we extracted the
repetitive spatiotemporal patterns from each subjects’ source current
by BigSTeP (Takeda et al., 2019a). BigSTeP was originally developed
to estimate common and subject-specific spatiotemporal patterns from
many subjects’ resting-state data. It is also useful for long data if they
are divided into short segments, which are regarded as subjects in the
BigSTeP framework. In this study, we divided the source currents into
10-s segments. Each segment was assumed to contain several unknown
spatiotemporal patterns at unknown onsets (Supplementary material,
SFig. 1), expressed as

K N
y,(0,1) = Z Z P, Dy (8 = n+ 1) + z,(0, 1),
k=1 n=1

where y, (v, 1) is the source current in segment s at vertex v and time 7, K
is the number of spatiotemporal patterns, N is their lengths, p, (v, 7) is the
k-th spatiotemporal pattern common across the segments, and z,(v, ) is
noise. ug,(7) is the onset timeseries of the k-th spatiotemporal pattern,
expressed as

uo (1) = 1 onset of k-th spatiotemporal pattern
K710 otherwise.

Given number K and length N of the spatiotemporal patterns, BigSTeP
estimated spatiotemporal patterns p,(v.?) and their onsets u;(¢) from
source current y (v, ).

In the actual application, we reduced the computation cost by using
SVD. We applied SVD to the source current, extracted the components
having a cumulative contribution ratio of 0.99, and multiplied the ex-
tracted components by their singular values to keep their amplitude in-
formation. We applied BigSTeP to the dimension-reduced source current
and estimated the onsets of the spatiotemporal patterns. Then from the
original source current, we estimated the spatiotemporal patterns using
the onsets.

The number and length of the spatiotemporal patterns were deter-
mined based on their reproducibility between the two runs. From the
source current of each run, we separately estimated the spatiotempo-
ral patterns. Then we vectorized the spatiotemporal patterns and calcu-
lated their correlation coefficient between the runs. This was repeated
by changing the number from 1 to 4 and the length from 0.1 to 0.5 s.
Finally, we selected the best number and length pair that achieved the
highest correlation coefficient.

2.6. Examining temporal frequency of spatiotemporal patterns

To examine the temporal frequency of the estimated spatiotemporal
patterns, we decomposed them into delta (0.4-4 Hz), theta (4-8 Hz),
alpha (8-13 Hz), beta (13-30 Hz), and gamma (30-50 Hz) band com-
ponents and calculated their powers. First, we decomposed the prepro-
cessed MEG and EEG data into these bands using FIR filters. Second,
we converted the filtered MEG and EEG data into source currents by
applying the inverse filter and the normalization used in the source cur-
rent estimation described above. Third, from the currents in each band,
we estimated the spatiotemporal patterns using the estimated onsets.
Finally, we calculated their powers by averaging the squares of the pat-
terns across the times and vertices.

We checked the validity of this decomposing procedure by compar-
ing the sum of the decomposed patterns with the original one. Their
correlation coefficients were sufficiently high (0.998 + 0.001), indicat-
ing that it worked well.

To check whether the powers were larger than those generated from
the fluctuations that were not time-locked to the estimated onsets, we
compared the powers with surrogates. The surrogate powers were gen-
erated by randomly shuffling the inter-onset intervals (IOIs) of the esti-
mated onsets and estimating the spatiotemporal patterns using the I0I-
shuffled onsets.
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2.7. Evaluating spatial similarity between spatiotemporal patterns and
RSNs

To evaluate the spatial similarity between the spatiotemporal pat-
terns and the fMRI-RSNs, we calculated their correlation coefficients.
We downloaded the spatial patterns of the fMRI-RSNs from BrainMap
ICA (http://brainmap.org/icns/). For each frequency component of the
patterns, we calculated the correlation coefficients between the patterns’
absolute values at each time and the spatial patterns of the RSNs.

Perhaps a high correlation coefficient is attributable to the artifacts
that occur when estimating the source current, such as the signal leak-
age (Brookes et al., 2012; Colclough et al., 2015; Sato et al., 2018). To
remove this possibility, we compared the correlation coefficient with
surrogates that also underwent the same artifacts. We generated 1,000
surrogate values for the correlation coefficient by estimating the pat-
terns from the source current using the I0I-shuffled onsets. The p-value
was estimated by

#lx, = x,g=1: 1,000}
p= 1,000 :

1

where x and x, are respectively the original and g-th surrogate values.

This is the multiple comparison problem, which we solved by con-
trolling the false discovery rate (FDR). FDR manages the expected pro-
portion of the false positive findings among all the rejected null hy-
potheses (Benjamini and Hochberg, 1995). We estimated the g-values
by Storey and Tibshirani’s method (Storey and Tibshirani, 2003). From
the distribution of the p-values, we first estimated the proportion of null
p-values 7, and based on r;, we converted the p-values to g-values. The
FDRs were controlled at 0.01.

To summarize the results of all the subjects, we examined how fre-
quently high correlation coefficients were observed. For each frequency
band and RSN, we calculated the proportion of the significant corre-
lation coefficients among all the times, patterns, and subjects. Since a
p-value less than 0.01 was considered significant, the chance level was
0.01.

2.8. Simulating resting-state brain activities

We conducted a simulation test to examine the generating mech-
anism of the spatiotemporal patterns. Here we asked how the propa-
gating activities along the human brain’s anatomical connectivity form
spatiotemporal patterns.

We simulated propagating brain activity using a whole-brain net-
work model of Kuramoto oscillators (Cabral et al., 2014; Gollo et al.,
2017; Pang et al., 2021). We parceled the cortex into 360 regions of in-
terest (ROIs) according to the HCP-MMP1.0 atlas (Glasser et al., 2016).
The phase dynamics of a ROI is expressed by

360

do, .
=K b; E(a,b)sin (8, (t — 7,5) — 8,(), ()

where 6, is the phase of ROI @, w, is the natural frequency of
ROI a, k is the global coupling strength, E(a,b) is the connectivity
strength, and 7,, is the delay between ROIs a and b. In this model,
we focused on the phase dynamics of limit-cycle oscillators coupled
across the ROIs while ignoring their amplitudes. We determined w,,
E(a,b), and 7, based on the anatomical connectivity derived from
many subjects’ diffusion MRIs (dMRIs) (Rosen and Halgren, 2021).
We downloaded the logarithm of connectivity f,, and fiber length
d,, from https://zenodo.org/record/4060485#.YKRHwS2MsWo. Con-
nectivity strength E(a, b) was obtained by calculating the antilogarithm
of f,, and normalizing the resultant values so that their maximum value
became 1. Based on Pang et al. (2021), natural frequency w, was deter-
mined by

2
©. =w Sa ~ Smin )
a — “max 4
Smax ~ Smin

- (wmax - wmin)<
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Reproducibility of spatiotemporal patterns
(Subject 10)
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Fig. 1. Sample reproducibility of spatiotemporal patterns for each pair of hy-
perparameters: number and length of spatiotemporal patterns. Correlation co-
efficients of estimated spatiotemporal patterns between two runs are shown for
subject 10. Based on this result, the number and length of spatiotemporal pat-
terns were respectively determined to be 1 and 0.1 s for this subject.

where s, is the ROI’s connectivity strength given by s, = i60 E(a,b).
Smin and s,,,. are respectively the minimum and maximum values of s,
across the ROIs. The frequency limits, ®,,, and ®,,,., were set to 8 and
40 Hz because transcranial magnetic stimulation (TMS) studies have
suggested that natural frequencies can be found at the alpha, beta, and
gamma bands in the human brain (Okazaki et al., 2021; Rosanova et al.,
2009). Delay z,,;, was calculated by z,, = d,, /v, where v is the conduction
velocity. We set « to 0, 20, ..., 180, or 200 and v to 2, 4, ..., 18, or 20
m/s.

For each x and v pair, we simulated the brain activity for 50 s using
an Euler scheme with 0.1 ms time steps from the random initial values
and discarded the first 20 s. The simulation was iterated 10 times with
different initial values. Thus, we obtained 30 (= 50 - 20) s x 10 simulated
brain activities for each « and v pair.

To characterize the behavior of the simulated brain activities, we
calculated the synchrony degrees (Cabral et al., 2014):

360
1

— exp(if,(1))
360 az:}

This value becomes 1 if the phases are identical across the ROIs and
close to O if uniformly distributed. From the 30-s simulated brain ac-
tivities, we calculated the SD of s(r) across the times to capture how
largely the synchrony degree fluctuated in time and quantified the sys-
tem’s metastability level (Cabral et al., 2014).

We also examined the width of the frequency band in the simulated
brain activity. For each ROI, we detected the peak frequency from the
power spectrum of sin(f,). Then from the distribution of the peak fre-
quencies, we calculated its entropy, which becomes large when the sim-
ulated brain activity was broadband.

s(t) = . 3

2.9. Estimating repetitive spatiotemporal patterns from simulated brain
activities

For each x and v pair, we estimated the repetitive spatiotemporal
patterns from the simulated brain activities using BigSTeP. The number
and length of the patterns were set to 1 and 0.1 s based on the parameters
selected for subject 10 (Fig. 1).

We evaluated the similarity of the estimated patterns with those esti-
mated from the real data. For this purpose, we characterized the patterns
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by their amplitudes because the patterns estimated from the real data
had a tendency common across the subjects in their amplitudes but not
in their peak times (Supplementary material, SFig. 2). For the simulated
data, we averaged the patterns’ absolute values across the times. For the
real data, we averaged their absolute values across the times and ver-
tices within each ROI. Then we calculated their correlation coefficients
between the simulated and real data.

Perhaps a high correlation coefficient is attributable to the artifacts
that occur when estimating the source current. To remove this possibil-
ity, we compared the correlation coefficient with surrogates that also
underwent the same artifacts. We generated 1,000 surrogate values for
the correlation coefficients by shuffling the ROIs in the simulated brain
activity while keeping the correspondence between the left and right
hemispheres. The p-value was estimated by Eq. (1). The p-values less
than 0.001 were considered significant.

2.10. Examining temporal frequency of spatiotemporal patterns

In the following analyses, we used the simulated brain activities at
k = 80 and v = 10 m/s because they included multiple frequency compo-
nents and the patterns’ amplitudes estimated from the simulated brain
activities resembled those estimated from the real data.

We examined the temporal frequency of the spatiotemporal patterns
in the same way as with the real data (Section 2.6). First, we decom-
posed simulated brain activities sin(,) into the delta (0.4-4 Hz), theta
(4-8 Hz), alpha (8-13 Hz), beta (13-30 Hz), and gamma (30-50 Hz)
band components using FIR filters. Second, from the simulated brain
activities in each band, we estimated the spatiotemporal patterns using
the estimated onsets. Finally, we calculated their powers by averaging
the squares of the patterns across the times and the ROIs.

To check whether the powers were larger than those generated from
the fluctuations that were not time-locked to the estimated onsets, we
compared the powers with surrogates. The surrogate powers were gen-
erated by randomly shuffling the IOIs of the estimated onsets and esti-
mating the spatiotemporal patterns using the I0I-shuffled onsets.

2.11. Examining generating mechanism of spatiotemporal pattern

To examine how the spatiotemporal pattern was generated from
the simulated brain activity (x = 80 and v = 10 m/s), we calculated the
phase-locking factors (PLFs) (Naruse et al., 2010; Tallon-Baudry et al.,
1996) from the simulated brain activity after the estimated onsets. The
PLFs were calculated by

o
(0= % Z exp(if, (1 — 7, + 1)),

o=1
where O is the number of estimated onsets and 7, is the o-th onset time.
This value becomes 1 if phase 6,(t) was completely time-locked to the
estimated onsets and close to O if it was time-unlocked.

2.12. Data and code availability

The processed data, such as the spatiotemporal pat-
terns, are available from the authors wupon request. The
codes for estimating the source currents are available from
https://vbmeg.atr.jp/docs/v22/static/vbmeg?2 resting_state_tutorial.html.
The codes for performing BigSTeP are available from
https://bicr.atr.jp//~takeda/BigSTeP.html. The codes for simulat-
ing the brain activities are available from the authors upon request.

3. Results
3.1. Estimating repetitive spatiotemporal patterns
From the resting-state MEG and EEG data, we estimated the source

currents by the LCMV beamformer (Van Veen et al., 1997) and normal-
ized them to have mean O and SD 1 for each vertex. We verified the
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Pattern 1 (Subject 10)

0.02s
2 8

Neurolmage 245 (2021) 118711

Fig. 2. Sample spatiotemporal pattern. Absolute values of subject 10’s spatiotemporal pattern (patterns 1) is shown. Activities over 0.1 of their maximum value are

shown.

estimated source currents by displaying the spatial distributions of their
powers (Supplementary material, SFig. 3B).

To extract the repetitive spatiotemporal patterns, we applied Big-
STeP (Takeda et al., 2019a) to the source currents for each subject.
The number and length of the patterns were determined based on the
reproducibility of the estimated patterns. We separately estimated the
patterns from the two runs, vectorized them, and calculated their corre-
lation coefficients between runs. Fig. 1 shows the resultant correlation
coefficients of subject 10. When the number and length of the patterns
were set to 1 and 0.1 s, respectively, the correlation coefficients exhib-
ited a maximum value of 0.94. Therefore, we set the number and length
of the patterns to these values for this subject. The correlation coeffi-
cients of all the subjects are shown in Supplementary material, SFig. 4.
For all the subjects, the numbers were set to 1-3 and the lengths were
set to 0.1-0.3 s.

Fig. 2 shows the estimated spatiotemporal pattern of subject 10 (pat-
tern 1). Within 0.1 s, the activities globally and consecutively changed
with time (Video 17). All the subjects’ spatiotemporal patterns are
shown in Videos 1-19. The numbers of onsets per second were 6.45 +
2.27, indicating that on average each pattern appeared about six times
a second.

3.2. Spatiotemporal patterns were broadband

To examine which frequency component the estimated spatiotem-
poral patterns consisted of, we decomposed the patterns into the delta
(0.4-4 Hz), theta (4-8 Hz), alpha (8-13 Hz), beta (13-30 Hz), and
gamma (30-50 Hz) band components, and calculated their powers. To
check whether the powers were larger than those generated from the
fluctuations that were not time-locked to the estimated onsets, we com-
pared the powers with the surrogates generated by the I0I-shuffled on-
sets.

Fig. 3A shows the resultant powers averaged across the times, ver-
tices, patterns, and subjects. For all the bands, the original powers (blue
line) were significantly larger than the surrogate ones (red line), indicat-
ing that for all the bands the spatiotemporal patterns had larger pow-
ers than the inherent fluctuations in the source currents. That is, the
patterns were broadband. Fig. 3B shows the spatial distributions of the
powers averaged across the times, patterns, and subjects. The powers
were large around the cingulate cortex. A similar result with Fig. 3 was
obtained from other hyperparameter values (Supplementary material,
SFig. 5), indicating its robustness.

3.3. RSNs in spatiotemporal patterns

We next evaluated the spatial similarity between the spatiotemporal
patterns and the fMRI-RSNs, which have been extensively examined in

human resting-state studies (Biswal et al., 1995; Fox et al., 2005; Raichle
et al., 2001; Smith et al., 2009). For each frequency component of the
patterns, we calculated the correlation coefficients between the patterns’
absolute values at each time and the spatial patterns of the RSNs.

Fig. 4A shows the correlation coefficients for pattern 1 (subject 10)
shown in Fig. 2. In each frequency component, pattern 1 transiently ex-
hibited spatial patterns that significantly resembled the RSNs (g < 0.01).
For example, the beta component exhibited spatial patterns that highly
correlated with the visual 1, default mode and sensorimotor networks
(g < 0.01). Note that the correlation coefficients seem to oscillate twice
around each frequency band because they were calculated from the pat-
terns’ absolute values.

We summarized the results of all the subjects by examining how fre-
quently high correlation coefficients were observed. Fig. 4B shows the
proportions of the high correlation coefficients (p < 0.01) among all the
times, patterns, and subjects. The theta, alpha and beta components fre-
quently exhibited spatial patterns that highly correlated with the default
mode and the sensorimotor networks. A similar result with Fig. 4B was
obtained from other hyperparameter values (Supplementary material,
SFig. 6), indicating its robustness.

These results suggest that multiple fMRI-RSNs were embedded in the
multiple frequency components of the spatiotemporal patterns.

3.4. Simulation test

Using simulated brain activities, we examined how propagating ac-
tivities along the anatomical connectivity formed such broadband spa-
tiotemporal patterns. We assumed a whole-brain network model of Ku-
ramoto oscillators [Eq. (2)] (Cabral et al., 2014; Gollo et al., 2017;
Pang et al., 2021). The natural frequency, coupling strength, and delay
between the ROIs were determined based on the anatomical connectiv-
ity.

We first characterized the behavior of the simulated brain activities
by the synchrony degree [Eq. (3)] (Cabral et al., 2014), which quantifies
the phase consistency across the ROIs. Fig. 5A shows the temporal means
(left) and SDs (right) of the synchrony degrees. They changed depending
on the following parameters: global coupling strength [x in Eq. (2)] and
conduction velocity, which determined the delays across the ROIs [z,
in Eq. (2)]. The SD (Fig. 5A, right) captures how largely the synchrony
degrees fluctuated in time and indicates the system’s metastability level
(Cabral et al., 2014).

We also examined the width of the frequency band in the simu-
lated brain activity by calculating the entropy of their peak frequen-
cies (Fig. 5B). The entropies decreased as the global coupling strength
increased (Fig. 5B), indicating that the bandwidth narrowed as the cou-
pling strength increased.
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Fig. 3. Temporal frequency of spatiotemporal pat-
terns. (A) Power of spatiotemporal patterns in each
frequency component. Powers averaged across times,
vertices, patterns, and subjects are shown. Error bars
of red line represent SDs of surrogate powers across
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1,000 repeats. (B) Spatial distribution of spatiotem-
poral patterns’ powers in each frequency component.
Powers were averaged across times, patterns, and sub-
- jects. For each frequency component, powers over 0.1
of their maximum value are shown.
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For each parameter pair, we estimated the repetitive spatiotempo-
ral patterns from the simulated brain activities. Although the simulated
brain activities had many differences from the real ones owing to the
model’s simplicity, we expected that the patterns estimated from the
simulated and real data had common characteristics if both reflected
the propagating activities along the human brains’ connectivity. To test
this expectation, we compared the patterns of the simulated and real
data. Because the patterns that were estimated from the real data shared
a tendency in their amplitudes across the subjects (Fig. 3B and Sup-
plementary material, SFig. 2), we characterized the patterns by their
amplitudes. Fig. 5C shows the correlation coefficients of the patterns’
amplitudes between the simulated and real data. In a wide range of pa-
rameters, the correlation coefficients were significantly high (p < 0.001),
suggesting the validity of our expectation. The correlation coefficients
especially tended to be high as the metastability level increased (their
correlation coefficient was 0.53, p < 0.001) (Fig. 5A right and C). Indeed,
where the global coupling strength = 80 and the conduction velocity
= 10 m/s, which exhibited a high metastability level (Fig. 5A, right),
the pattern estimated from the simulated data had a large amplitude
around the cingulate cortex (Fig. 5D) like those estimated from the real
data (Fig. 3B). These results suggest that the patterns estimated from
the real data reflected the propagating activities in the metastable brain
dynamics.

To examine the generating mechanism of the broadband spatiotem-
poral patterns estimated from real data (Fig. 3A), we chose the simu-

Originated from MEG
Originated from EEG

Gamma

43
[ S|
Small Large

lated brain activities at global coupling strength = 80 and conduction
velocity = 10 m/s. At these parameter values, the simulated brain activi-
ties included multiple frequency components (Fig. 5B) and the patterns’
amplitudes were similar between the simulated and real data (Fig. 5C).

Fig. 6A shows the power of the spatiotemporal patterns estimated
from the simulated brain activities at each frequency band. For the al-
pha, beta, and gamma bands, they were significantly larger than the
surrogates (red line), indicating that for these bands the spatiotemporal
patterns had larger powers than the inherent fluctuations in the simu-
lated brain activities. That is, the patterns consisted of alpha, beta, and
gamma band components.

We further chose three ROIs (R_V1_ROI, L_10d_ROI, and
R_v23ab_ROI) at which the patterns had large amplitudes in the
alpha, beta, and gamma bands, respectively. Fig. 6B shows the patterns
at these ROIs. Their amplitudes were significantly larger than the sur-
rogate ones generated by the IOI-shuffled onsets. To identify the factor
responsible for the large amplitudes, we displayed phases 6,(r) after
the estimated onsets in Fig. 6C. They seem consistent across the onsets
when the pattern exhibited large amplitudes (e.g., around 0.08 s for
R_V1_RO], Fig. 6B and C). Indeed, the PLFs, which quantify the phase
consistencies across the onsets, became high at these times (Fig. 6B
and D). These results indicate that the phase consistency across the
onsets increased the pattern’s amplitudes as with the stimulus-triggered
averages (Makeig et al., 2002). We believe that the propagating activity
aligned the phases of the alpha, beta, and gamma band oscillators at
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Fig. 4. Spatial similarity between spatiotemporal patterns and fMRI-RSNs. (A) Sample correlation coefficients between pattern 1 (subject 10) and fMRI-RSNs.
RSNs are shown which exhibited significant (¢ < 0.01) and high (r > 0.3) correlation coefficients. (B) Frequency of high correlation coefficients. Proportions of high
correlation coefficients (p < 0.01) among all the times, patterns, and subjects are shown. Chance level was 0.01.

these ROIs, and their phase consistencies across the onsets increased,
resulting in large amplitudes at these ROIs and bands.

4. Discussion

In this study, we identified the repetitive spatiotemporal patterns
from the resting-state brain activities estimated from MEG and EEG
data. The patterns consisted of multiple frequency components, each
of which transiently exhibited the frequency-specific RSNs. The simu-
lation test suggests that the patterns reflected the phase alignment of
the multiple frequency oscillators induced by the propagating activities
along the anatomical connectivity. These results revealed whole-brain
propagating activities that transiently exhibited multiple fMRI-RSNs in
their multiple frequency components.

4.1. Reliability of spatiotemporal patterns

Using BigSTeP, we estimated the repetitive spatiotemporal patterns
from the resting-state brain activities. Although perhaps such repetitive
patterns do not exist and those shown in our study (Fig. 2) simply reflect

the random fluctuations inherent in the resting-state brain activities, we
believe this possibility is unlikely for the following three reasons. First,
many experimental (Han et al., 2008; Ikegaya et al., 2004; Ji and Wilson,
2007; Matsui et al., 2016; Wilson and McNaughton, 1994) and theoret-
ical (Izhikevich et al., 2004; Roberts et al., 2019; Teramae et al., 2012)
studies have reported the emergence of repetitive spatiotemporal pat-
terns in resting-state brain activities. Therefore, it is reasonable that our
data also exhibited such patterns that were extracted by BigSTeP. Sec-
ond, the estimated patterns had high reproducibility between the two
runs (Fig. 1 and Supplementary material, SFig. 4). If the patterns re-
flected random fluctuations, the reproducibility would be much lower.
Finally, the powers of the patterns were significantly larger than the sur-
rogate ones, which were generated using IOI-shuffled onsets (Fig. 3A).
This result indicates that the patterns were not generated from fluctua-
tions time-unlocked to the estimated onsets.

4.2. Generating mechanism of spatiotemporal patterns

To gain insight into the generating mechanism of broadband spa-
tiotemporal patterns (Fig. 3A), we conducted a simulation test (Figs. 5
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Fig. 5. Behavior of simulated brain activities. (A) Synchrony degree. Left and right figures show temporal mean and SD of synchrony degrees. (B) Entropy of peak
frequencies. (C) Similarity of spatiotemporal patterns estimated from simulated and real data. Correlation coefficients of patterns’ amplitudes are shown between
simulated and real data. Correlation coefficients were averaged across iterations. (D) Amplitude of sample pattern estimated from simulated data at global coupling

strength = 80 and conduction velocity = 10 m/s.

and 6). Using the whole-brain network model of the Kuramoto oscilla-
tors, we examined how the propagating activity along the anatomical
connectivity formed a broadband spatiotemporal pattern. It was shown
that the phase consistency across the estimated onsets increased the pat-
tern’s amplitudes in the multiple frequency bands (Fig. 6B and D).

About two decades ago, Makeig et al. (2002) showed that event-
related potentials were mainly generated by stimulus-induced phase
resetting of ongoing rhythms. More specifically, the stimulus-induced
propagating activities modulated the phases of oscillators to fixed val-
ues at fixed times after the stimulus onsets, and the stimulus-triggered
averaging procedure enhanced such stimulus-locked phases. Likewise in
our case, the internally-induced propagating activities probably modu-
lated the phases of the multiple frequency oscillators to fixed values
at fixed times after the estimated onsets, and their phase consistencies
across the onsets increased, resulting in broadband spatiotemporal pat-
terns (Fig. 3A).

On the other hand, the similarity of the patterns’ amplitudes esti-
mated from the simulated and real data tended to be higher as the
metastability level increased (Fig. 5A right and C). Metastability is a
dynamical phenomenon, in which the system’s state spontaneously cy-
cles between multiple weakly attracting states (Heitmann and Breaks-
pear, 2018; Sase and Kitajo, 2021), and might account for the dynamics
of spontaneous brain activities (Roberts et al., 2019; Sase and Kitajo,
2021). Our result suggests that the spatiotemporal patterns reflected the
fixed paths that the states repeatedly went through in the metastable
brain dynamics.

In this simulation test, we used the simple model and focused on the
phase dynamics of limit-cycle oscillators coupled across the 360 ROIs
while ignoring their amplitudes. On the other hand, more detailed mod-

els have been proposed, such as the neural mass model (Jansen and
Rit, 1995). Adopting such detailed models might reproduce various
characteristics of spatiotemporal patterns, such as the power spectrum
(Fig. 3A).

4.3. Relationship between neuronal propagating activities and
hemodynamic RSNs

Matsui et al. (2016) simultaneously recorded neuronal calcium and
hemodynamic signals from mouse cortices and found that the hemody-
namic RSNs were embedded in the phases of neuronal propagating activ-
ities. Our results extended this finding for human subjects. We revealed
the whole-brain propagating activities from the resting-state MEG and
EEG data. They transiently exhibited multiple RSNs in their multiple
frequency components (Fig. 4). Human resting-state fMRIs have been
shown to include various RSNs (Smith et al., 2009). Such variability
may be partially attributable to the various frequency components in
the neuronal propagating activities.

Connectome harmonics, which is the Laplacian eigenvectors of the
anatomical connectivity derived from dMRI, characterizes how activity
is diffused along the connectivity. Connectome harmonics resembles the
spatial patterns of the fMRI-RSNs (Atasoy et al., 2016), suggesting that
the neuronal propagating activities along the anatomical connectivity
contribute to fMRI-RSNs. In our study, we showed that the propagating
activities estimated from the resting-state MEG and EEG data transiently
exhibited spatial patterns resembling fMRI-RSNs (Fig. 4). Therefore, our
results demonstrated the validity of the suggestion from connectome
harmonics.
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Fig. 6. Detailed properties of simulated brain activities at global coupling strength = 80 and conduction velocity = 10 m/s. (A) Power of spatiotemporal patterns
estimated from simulated brain activities. Powers averaged across times and iterations are shown for each frequency component. Error bars of red line represent
SDs of surrogate powers across 1,000 repeats. (B) Sample pattern at three ROIs (R_V1_ROI, L_10d_ROI, and R_v23ab_ROI), which respectively included large alpha,
beta, and gamma band components. Red lines and areas show means and SDs of surrogate patterns across 1,000 repeats. (C) Phases after estimated onsets. (D)
Phase-locking factors (PLFs). Red lines and areas show means and SDs of surrogate PLFs across 1,000 repeats.

4.4. Necessity to use both MEG and EEG data

Previous human EEG studies suggested the existence of whole-brain
propagating activities in a resting-state (Ito et al., 2005; 2007; Massi-
mini et al., 2004). However, because these works did not estimate the
source currents, their detailed locations are unclear. Generally speak-
ing, estimating source currents only from EEG is difficult owing to its
low spatial resolution. In this study, we reduced this difficulty by in-
tegrating MEG with the EEG data. Because these measurements have
different sensitivities to source currents, integrating them alleviates the
ill-posed nature of MEG/EEG source imaging (Takeda et al., 2019b).
Indeed, we obtained reliable source currents (Supplementary material,
SFig. 3B) that are consistent with a previous MEG study (Niso et al.,
2019).

Furthermore, the MEG and EEG data almost equally contributed to
generating the spatiotemporal patterns (Fig. 3A). This also indicates the
necessity of using both MEG and EEG data to identify the whole-brain
propagating activities in the source space.

4.5. Relation to other resting-state MEG/EEG studies

Using cluster analyses and hidden Markov models (HMMs),
MEG/EEG studies have characterized resting-state MEG/EEG data by
segmenting them into a few representative states (e.g., microstates)
(Baker et al., 2014; Michel and Koenig, 2018; Pascual-Marqui et al.,
1995; Vidaurre et al., 2018; Woolrich et al., 2013). In contrast, we esti-
mated the repetitive spatiotemporal patterns to capture the propagating
activities. If an activity propagates across different regions (e.g., from
visual to motor cortices), its spatial pattern consecutively changes with
time. BigSTeP can represent it with a spatiotemporal pattern while clus-
ter analyses and HMMs reduce it to a state or a state transition. There-
fore, BigSTeP is suitable for our purpose.

The spatiotemporal patterns included multiple frequency compo-
nents (Fig. 3A), indicating that the phases were time-locked across the
frequencies in the patterns. On the other hand, MEG/EEG studies re-
ported cross-frequency phase synchronization (Baselice et al., 2019;
Palva and Palva, 2018; Sorrentino et al., 2020), where the phases of
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a frequency band are time-locked to those of another frequency band.
Our result suggests that cross-frequency phase synchronization is at least
partially attributable to whole-brain propagating activities.

The spatiotemporal patterns transiently exhibited multiple fMRI-
RSNs in their multiple frequency components. For example, the alpha
component exhibited the default mode and sensorimotor networks, and
the beta component exhibited sensorimotor networks (Fig. 4). This re-
sult is consistent with a previous EEG-fMRI study that examined the
correlation between the fluctuation of fMRI-RSNs and the concurrent
EEG powers (Mantini et al., 2007). They found that the DMN fluctua-
tion highly correlated with the EEG powers in the alpha and beta bands
and the sensorimotor network’s fluctuation highly correlated with the
EEG power in the beta band.

4.6. Functional role of whole-brain propagating activities

The existence of multiple frequency components and RSNs in a spa-
tiotemporal pattern indicates that they appeared in a time-locked way,
implying the information transmission across these activities. This sug-
gests that the patterns reflect a process that integrates the information
distributed over the frequencies and networks to generate conscious-
ness. Indeed, the patterns’ lengths (0.1-0.3 s) were almost consistent
with a suggested timescale of consciousness (around 0.2 s) (Deco et al.,
2019), and the patterns had large powers around the posterior cingu-
late cortex (Fig. 3B), whose activities reduced in unconscious states
(Dehaene and Changeux, 2011). Furthermore, propagating activities in
awake states were shown to contribute to cognitive functions (Davis
et al., 2020; Zhang et al., 2018). Therefore, further investigation of the
whole-brain propagating activities may elucidate the mechanism of con-
sciousness.
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