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An EMG-Driven Weight Support System
With Pneumatic Artificial Muscles
Jun-ichiro Furukawa, Tomoyuki Noda, Tatsuya Teramae, and Jun Morimoto

Abstract—In this paper, we introduce our newly developed
biosignal-based vertical weight support system that is composed
of pneumatic artificial muscles (PAMs) and an electromyography
(EMG) measurement device. By using our developed weight sup-
port system, assist force can be varied based on measured muscle
activities; most existing systems can only generate constant assist
forces. In this paper, we estimated knee and ankle joint torques
from measured EMGs using floating base inverse dynamics. Knee
and ankle joint estimated torques are converted to vertical forces
by the kinematic model of a subject. The converted vertical
forces are used as force inputs for the PAM actuator system. To
validate our system’s control performance, four healthy subjects
performed a one-leg squat with his left leg while his right leg
was assisted by our proposed system. We used the vertical force
estimated from the measured EMG signals as a control input to
the weight support system. We compared EMG magnitudes with
four different experimental conditions: 1) normal two-leg squat;
2) one-leg squat without the assist system; 3) one-leg squat with
EMG-based weight support; and 4) one-leg squat with constant
force support. The EMG magnitude with the proposed weight
support system was much closer to that with normal two-leg squat
than that with one-leg squat without the assist system and than
that with one-leg squat with constant force support.

Index Terms—Electromyography (EMG), force control, pneu-
matic actuators, rehabilitaion robotics, weight support system.

I. INTRODUCTION

W EIGHT support is essential in rehabilitation for lower
limbs, where standing up, stepping, walking, or balanc-

ing movements can be involved. In conventional weight sup-
port systems, assist force is typically constant, and operational
height ranges are limited. Therefore, weight support devices
have only been used for safety or fault tolerance instead of
actively changing amount of weight support. On the other hand,
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Fig. 1. Schematic of our proposed weight support system. Upward and
downward movements are assisted with the force estimated from measured
electromyography (EMG).

for active weight and movement support, research attention on
the development of an exoskeleton robot is increasing [1]–[6].
However, it remains difficult for therapists to work with such
systems since exoskeleton robots generally require complicated
setups. In this paper, we propose a weight support system
that has a wider operational range and can adaptively change
the amount of support rather than simply generating constant
force. To satisfy the aforementioned specifications, we used
pneumatic artificial muscles (PAMs) with force sensors and a
device to measure the PAM length. PAMs are used for robotics
applications [6]–[10]. Fig. 1 shows a schematic of our proposed
weight support system.

To adaptively change the weight support force based on the
subject’s status, a user’s movement intention must be estimated.
For predicting user movements to control assistive devices,
EMGs are commonly used [1], [4], [11]–[18]. In this paper,
we estimate knee and ankle joint torque from measured EMGs.
We first simultaneously measure the joint angle trajectories
and the EMG profiles of a subject. Then, the torque sequence
that corresponds to the measured joint angle trajectories is
derived using inverse dynamics. Although previous studies also
used inverse dynamics to estimate knee-joint torque from EMG
signals, the knee movements were generated when a subject
was sitting [19], [20]. To deal with such daily life related
behaviors as squat movements, we must explicitly consider the
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ground reaction force in inverse dynamics. Therefore, we use
floating base inverse dynamics [21].

To find the relationship between the target torque and the
measured EMG signals, we built a real-time torque estimation
model, which is composed of the Hill–Stroeve model [22], [23],
to derive the muscle force from the measured EMGs and a
pulley-tendon model to convert the muscle force to joint torque.
The estimated torques of the knee and ankle joints are used
to derive vertical forces using the subject’s kinematic model.
Finally, we used the derived vertical forces as force inputs for
our PAM actuator system. To validate its control performance,
a subject performed one-leg squats by his left leg while his
right leg was assisted by our proposed system. We used the
vertical force estimated from the knee and ankle movement
related EMG signals measured by seven sensor channels as
control input for the weight support system. We compared
EMG magnitudes with four different experimental conditions:
1) normal two-leg squat; 2) one-leg squat without the assist
system; 3) one-leg squat with EMG-based weight support;
and 4) one-leg squat with constant force support. The EMG
magnitude with our proposed weight support system was much
closer to that with a normal two-leg squat than that with a one-
leg squat without using the assist system.

The rest of this paper is organized as follows. In Section II,
we introduce our newly developed weight support system that
is composed of PAMs and an EMG measurement device. In
Section III, we explain how we derive the assist force from
the measured EMG signals. In Section IV, we introduce a
calibration strategy for our weight support system and its
experimental setups. In Section V, we show the results of squat
experiments with four different conditions. We finally conclude
in Section VI.

II. WEIGHT SUPPORT SYSTEM

A. PAM Actuators

To assist motions by estimated torques of the knee and ankle
joints, we develop a weight support system (see Fig. 2), where
the actuator is a paired PAMs.

We use 1.4-m-long PAM (FESTO Inc.), which has a diam-
eter of 10 mm and 25% contraction rate from natural length.
According to the specification provided by FESTO Inc., the
PAM can generate 630-N maximum force. The system is about
0.8 kg without including air compressor and valve. In addition,
the system can operate up to 0.5 Hz with the amplitude of
0.35 m. These specifications were experimentally validated as
described in Section IV-A.

While PAM is lightweight, it can produce large force, con-
verting pressured gas energy into contraction force through its
rubber tubes. The force is generated by the path contraction of
the spiral fiber expansion embedded by the pneumatic bladder.
With proportional pressure valves, PAM pressure p can be con-
trolled. The force generated by PAM depends on the pressure
p and the contraction rate; the PAM force model [24], [25] is
given by

fpam =
πD2

0p

4

(
3

tan2 ψ0
(1− ε)2 − bias

)
(1)

Fig. 2. Torque tracking performance of PAM-based weight support system
with frequencies of 0.1, 0.25, and 0.5 Hz. A thirty-kilogram weight was
attached to the bottom of the support system.

where ε is the contraction rate of PAM, and D0 and ψ0 are the
PAM diameter and the angle of the embedded spiral wire at the
atmosphere pressure, respectively. This can be represented as
a quadratic function multiplied with the current PAM pressure
p, i.e.,

fpam = g(ε, p) = p(aε2 + bε+ c) (2)

where

a =
3πD2

0

4 tan2 ψ0
, b = − 3πD2

0

2 tan2 ψ0

c =
πD2

0

4

(
3

tan2 ψ0
− 1

sin2 ψ0

)
. (3)

If desired force fpam needs to be generated at contraction
rate ε, desired valve pressure p∗ can be derived from the inverse
model p∗ = g−1(fpam; ε).

B. EMG Measurement

We estimate the muscle force from ten sample histories of
EMG signals, where the sampling period is Δt = 4 ms. In other
words, we use a 40-ms sample history to estimate muscle force.
Then, for the muscle force estimation, we consider an input
variable

qit =
ui
t

ui
max

(4)

where

ui
t =

t∑
k=t−9

eikΔt (5)

where eik represents low-pass filtered and full-wave rectified
muscle activity measured by the ith EMG sensor channel at
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Fig. 3. Control strategy of the weight support system. Muscle forces are
estimated from full-wave rectified and bandpass-filtered EMG signals. Joint
torque τ̂ is derived from the estimated muscle force by using the tendon-pulley
model. Then, the derived torque is converted to desired assist force fpam for
PAM by taking measured joint angles into account.

time k with the cutoff frequency of 2 Hz. ui
max is the measured

maximum muscle activity to normalize an impedance change
of an EMG electrode.

III. METHOD

Fig. 3 shows our control strategy of the proposed weight
support system. First, we measure the EMG signals and the
joint angles simultaneously from the left leg during the normal
squat motion, and the parameters of the tendon-pulley model in
(7) are estimated from the acquired EMG and joint angle data.
Then, the online operation of the weight support system is as
follows.

1) Online EMG and joint angle measurements during the
motion.

2) Derive the muscle force from the Hill–Stroeve model.
3) Estimation of the knee and ankle joint torques by using

the tendon-pulley model with the identified parameters.
4) Calculate the vertical assist force from the estimated knee

and ankle joint torques by using the Jacobian matrix,
which represents the relationship between the joint move-
ments and a hip position movement.

A. Estimating Muscle Force

The muscle force is derived by using the Hill–Stroeve model
[22], [23] from EMG signals. The model takes the nonlin-
earities of the muscle length–tension relationship and force–
velocity relationship, i.e.,

f i
t = k

(
ξit

)
h

(
ηit, ξ

i
t

)
f i
maxq

i
t (6)

where each nonlinear function k(·) and h(·) cite Hatze’s pa-
rameterized fitting function [26] with two parameters, namely,
a1 and a2 (see the Appendix).

B. Torque Estimation Model

We consider knee and ankle joint estimation torques τ̂t and
muscle forces f t using the following standard simple linear
model:

τ̂t = w�ft (7)

where ft = (f1, . . . , fm, 1)� is the muscle contraction force,
and w = (w1, . . . , wn, w0) is the model parameter vector of a
constant pulley model at knee and ankle joints. These param-
eters are determined by the least square estimation method to
minimize the torque estimation error

E =
1

2

N∑
t=0

(τt − τ̂t)
2 (8)

where the target torque τt is derived from the inverse dynamics
model, as explained in the following section. N is the number
of the training sampling.

C. Floating Base Inverse Dynamics

To derive joint torques from joint angle trajectories, an
inverse dynamics model of an approximated subject body is
used. However, different from previous studies that worked on
estimating knee movements from EMG signals when a subject
was sitting on a chair [19], [20], we consider squat movements
that are involved in daily behaviors. Therefore, we need to
explicitly take the ground reaction forces fgrf into account. For
this purpose, we use floating base inverse dynamics

M(q)q̈+ h(q, q̇) + g(q) = S�τ + J�
c (q)fgrf (9)

where q represents the general coordinate system of the joint
angles, M(q) is the floating base inertia matrix, h(q, q̇) is
the floating base centripetal Coriolis, g(q) is the gravity
force, S is the actuated joint selection matrix, and Jc is the
Jacobian matrix, which represents relationships between joint
angle movements and deviations of contact points. If fgrf can be
measured by a force sensor, the inverse dynamics torques can
be computed from (9). However, this approach is undesirable
because the force sensors must be located at all contact points.
Therefore, we calculate the torques and the ground reaction
forces that correspond to the joint angles, the velocity, and
the acceleration by computing the QR decomposition of Jc

[21], i.e.,

J�
c = Q

[
R
0

]
(10)

where Q is orthogonal, and R is an upper triangle matrix of
rank k if given rank(Jc) = k. We can decompose the dynamics
(9) into two independent equations from (10), i.e.,

ScQ
�(Mq̈+ h+ g) =ScQ

�S�τ +Rfgrf (11)

SuQ
�(Mq̈+ h+ g) =SuQ

�S�τ . (12)

Although (11) and (12) are independent, the full dynam-
ics is represented with either equation. Equation (12) de-
scribes the full dynamics without ground reaction forces,
and the ground reaction forces are computed from (11),
where S = [In×n 0n×6], Sc = [Ik×k 0k×(n+6−k)], and Su =
[0(n+6−k)×k I(n+6−k)×(n+6−k)]. In×n is a unit matrix of the
n rows and n columns.
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D. Weight Support Force

Finally, the estimated joint torques are converted to the force
inputs for the PAM with using joint angle information measured
by the goniometers. The measured joint angles are used to
derive the Jacobian matrix

J =

[
∂yhip
∂θknee

∂yhip
∂θankle

]
(13)

where yhip denotes vertical hip position, θknee denotes left knee
joint angle, and θankle denotes left ankle joint angle (see also
Fig. 3). By using the derived Jacobian, we convert the estimated
knee and ankle joint torques to the vertical support forces

fpam = (JJ�)−1J

[
τ̂knee
τ̂ankle

]
(14)

where τ̂knee and τ̂ankle are estimated left knee and ankle
torques, respectively.

IV. EXPERIMENTAL SETUPS

Here, we introduce our experimental setups. In Section IV-A,
we explain a calibration procedure of the PAM system. In
Section IV-B, we show the four different setups of the squat
experiments.

A. Calibrations

1) PAM Pressure to Force Model: At the calibration stage,
we obtain load cell variables that measure the actual vertical
PAM force, the valve pressure, and the contraction rate by
periodically changing the loads. Using the least square method,
we estimate the PAM parameters in (2) with using the initial
values in (3) and initialize encoder so that we can find an
initial length of PAM to calculate PAM contraction rate. For the
quadratic regression of (2), we consider forces and contraction
rates as inputs and the valve pressure as output. Fig. 2 shows the
frequency responses of the PAM-based weight support system.
We obtained the data by generating support force with a range
from 100 to 300 N. The amplitude error and the phase error are
shown in Fig. 2.

2) EMG to Joint Torque Model: The parameter of the
tendon-pulley model in (7) was estimated from squat motion
data for 30 s with different frequencies and depths. In other
words, the number of samples used to find the parameters was
N = 7500. Fig. 4 shows the placements of EMG electrode and
goniometers. We measured EMG signals of the femoral muscle
(Channel 1: e1), the biceps muscle of the thigh (Channel 2: e2),
the vastus medialis muscle (Channel 3: e3), the vastus lateralis
muscle (Channel 4: e4), the tibialis anterior muscle (Channel 5:
e5), the lateral head of the gastrocnemius muscle (Channel 6:
e6), and the medial head of the gastrocnemius muscle (Channel
7: e7). The left leg pitch angles of hip, knee, and ankle joints
are measured by goniometers. Then, the measured joint angles
are used in the floating base inverse dynamics model.

We sample the amplified EMG and goniometer signals with
a sampling rate of 250 Hz, i.e., sampling period is Δt = 4 ms.

Fig. 4. EMG electrode and goniometer placements.

Fig. 5. Torque estimation performances. The estimated (a) knee and (b) ankle
joint torques from EMG signals are indicated by solid lines. Target joint torque
profiles derived from joint angle trajectory with using floating base inverse
dynamics model are plotted by dashed lines. The estimation performances are
evaluated with using a test data set that is not used for finding the parameters of
the tendon-pulley model in (7).

To estimate the knee joint torque, we compute muscle
forces with an augmented input for bias estimation: f =
(f1, . . . , f7, 1)� from the EMG signals measured by the seven
sensor channels. Similarly, the ankle joint torque is estimated
by three muscle forces f = (f5, f6, f7, 1)�. f1 is derived from
the femoral muscle activity, f2 is from the biceps muscle
of the thigh, f3 is from the vastus medialis muscle, f4 is
from the vastus lateralis muscle, f5 is from the tibialis anterior
muscle, f6 is from the lateral head of the gastrocnemius muscle,
and f7 is from the medial head of the gastrocnemius muscle.
Fig. 5 shows torque estimation performances. This estimation
performances are evaluated with using a test data set that is not
used for finding the parameters of the tendon-pulley model in
(7). The correlation between the predicted knee torques from
the EMG signals and target torque trajectories was 0.86, and
the root-mean-square error was 33.9 N · m. The correlation
coefficient between the predicted ankle torques from the EMG
signals and target torque trajectories was 0.86, and the root-
mean-square error was 8.62 N · m. These results indicate that
our torque estimation method from the EMG signals is useful
to control our PAM-based weight support system. Note that,
since the knee joint torque is dominant in the squat movement,
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Fig. 6. Experimental setups. (a) Normal two-leg squat. (b) One-leg squat
without using the assist system. (c) One-leg squat with the weight support. In
experimental setups (b) and (c), subjects are instructed to touch the wall to
maintain the balance. (a) Two-leg normal squat. (b) Left leg squat. (c) Left leg
squat + assist right side.

we mainly analyze the EMG signals around the knee joint in
Section V.

B. Assisting Squat Movements

We compared EMG magnitudes with four different experi-
mental conditions: 1) normal two-leg squat; 2) one-leg squat
without the assist system; 3) one-leg squat with EMG-based
weight support; and 4) one-leg squat with constant force sup-
port, where the constant force is derived as the mean value
of target assist force calculated from the floating base inverse
dynamics. Fig. 6 shows the three squat experimental setups
used for the four different experimental conditions.

We set two different frequencies as lower and upper limits
for each squat in order to validate real-time assist performance
of the weight support system: 0.2 Hz for the slow dynamic
motion and 0.5 Hz for the fast dynamic motion. The lower limit
that the subject was able to squat continuously with using one
leg without weight assist was decided as 0.2 Hz. The upper
limit that was able to be accurately controlled with respect to
the response of the valve from the result of PAM calibrations
in Section IV-A was 0.5 Hz. Four healthy subjects took part
in the experiments (ages 23–30, males). The subjects were
instructed to match the timing of squat motion to metronome
sound.

V. RESULTS

Here, we show the results of real-time assist performance of
the squat movements by using the developed weight support
system.

A. Individual Data Analysis

Fig. 7(a) and (b), respectively, shows mean and variance
of the knee joint angles of representative subject (subject A)

during one cycle of 0.2- and 0.5-Hz squat movements in the
four different squat conditions. (c-1)–(c-8) in Fig. 7(c) show the
mean and variance of EMG signals measured from the vastus
medialis muscle (e3) and the vastus lateralis muscle (e4) of
subject A during one cycle of 0.2-Hz squat movements in the
four different squat conditions, and (c-9) shows the box plot
of the corresponding EMG magnitude. (d-1)–(d-8) in Fig. 7(d)
show the mean and variance of EMG signals measured from
the vastus medialis muscle (e3) and the vastus lateralis muscle
(e4) of subject A during one cycle of 0.5-Hz squat movements
in the four different squat conditions, and (d-9) shows the box
plot of the corresponding EMG magnitude. Fig. 7(e) and (f)
shows the EMG data of subject B. Fig. 7(g) and (h) shows the
EMG data of subject C. Fig. 7(i) and (j) shows the EMG data
of subject D. We focused on monitoring these two muscles, i.e.,
the vastus medialis and vastus lateralis muscles, because these
knee-joint related muscles mainly contributed to generate the
squat movements. All the EMG profiles in Fig. 7 are low-pass
filtered with a cutoff of 2 Hz and full-wave rectified.

As presented in Fig. 7(a) and (b), the subject generated squat
movements with similar amplitude and frequency in the four
different squat conditions. Fig. 7(c)–(j) shows the amplitudes
of EMG signals in the four different squat conditions. These
results indicate that the magnitude of EMG signals in the
normal and the EMG-based assist conditions is less than that in
the one-leg condition, and that in the constant-force-based assist
conditions is little less. Table I shows the root mean square

(RMS:
√
(1/T )

∫ T

0 x(t)2dt for 30 s, T = 30) of raw EMG

signals from seven muscles (e1−e7) with the two different
movement frequencies of 0.2 and 0.5 Hz in the four differ-
ent squat conditions. Results in Table I show that the vastus
medialis muscle activities (e3) and the vastus lateralis muscle
activities (e4) in the normal squat condition (i) and the one-leg
squat with EMG-based weight support (iii) are comparable in
each subject, whereas these muscle activities are much larger in
the one-leg squat without weight support condition (ii). These
two muscles in the one-leg squat with constant force support
(iv) are also assisted, but not as much as EMG-based weight
support.

On the other hand, for the other five muscles, we did not
observe consistent differences in EMG signals in the four
different experimental conditions among the four subjects (see
also Table I). For subject D, we found much larger muscle
activities on the tibialis anterior muscle e5. This is possibly
because subject D intensively uses that muscle to maintain the
balance during the squat movements.

B. Integrated Data Analysis

Fig. 8(a) and (b) shows the average %MVC of the vastus
medialis muscle activities (e3) and vastus lateralis muscle
activities (e4) with the two different movement frequencies of
0.2 and 0.5 Hz in the four different squat conditions across
all subjects. The %MVC is normalized muscle activity (e) for
each subject and each muscle separately, by using maximum
value of rectified and low-pass filtered EMG signal (emax) :
%MVC = e/emax. This allows comparing among different
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Fig. 7. Squat movement profiles of each subject with frequencies of 0.2 and 0.5 Hz among the four different experimental conditions with box plot. Blue lines
show normal squat, green lines show one-leg squat without weight support, red lines show one-leg squat with EMG-based weight support, and yellow lines show
one-leg squat with constant force support. (a) and (b) Mean and variance of knee joint angles of representative subject during one cycle of 0.2- and 0.5-Hz squat
movements in the four different squat conditions. (c)–(j) Squat movement profiles of the vastus medialis and vastus lateralis muscles with frequencies of 0.2
and 0.5 Hz.

subjects. emax is the maximum value of the muscle activity
e, which is calculated in each experiment and regarded as the
muscle activity level of maximum voluntary contraction (MVC)
in this study. We applied a t-test to the average %MVC of
one-leg squat without the weight support (ii), one-leg squat
with the EMG-based weight support (iii), and one-leg squat
with the constant force support (iv) with reference to normal

two-leg squat (i). We found a significant difference between
(i) and (ii) (p < 0.01) and between (i) and (iv) (p < 0.05),
but we found no significant difference between (i) and (iii)
(p > 0.05) in the 0.2-Hz squat movements. In addition, we also
found a significant difference between (i) and (ii) (p < 0.01)
and between (i) and (iv) (p < 0.01), but we found no significant
difference between (i) and (iii) (p > 0.05) in the 0.5-Hz squat
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TABLE I
RMS OF THE RAW EMG SIGNALS

movements. These results suggest that the developed weight
support system can assist the left leg of the subjects with the
similar force that the right leg is supposed to generate using
a PAM-based weight support system. Our system is controlled
by the force estimated from the EMG signals of the left leg,
assuming that humans move both left and right legs with the
same force while squatting. The constant force support also
assisted, but the effectiveness was less than the EMG-based
weight support. Consequently, we showed the usefulness of our
proposed weight support system for actively assisting subjects
by using the measured EMG signals.

VI. CONCLUSION

In this paper, we have introduced our newly developed PAM-
based weight support system, which can be controlled by the
estimated joint torques with the online EMG measurement. The
parameters of the torque estimation model are calibrated with
using an inverse dynamics model, which represents physical

property of a subject. In particular, we considered using floating
base inverse dynamics to explicitly take the ground reaction
force into account so that we can treat the movements with
both feet on the ground such as squat behaviors. As a concrete
example, we applied our developed system to assist squat
movement. The results show that muscle activities measured
from vastus medialis and vastus lateralis muscles EMG signals
were not significantly different between one-leg squat with the
EMG-based weight support and normal two-leg squat, whereas
the differences between normal two-leg squat and one-leg squat
and between normal two-leg squat and one-leg squat with
the constant force support were significant. As an application,
this system can possibly be used for partial weight bearing
therapies. Concretely, it can possibly be used for compensating
the disabled side of the body for the early stage of therapies.
Then, the vertical component force can be gradually decreased
as the patient recovers lower body motor functions.

Since the PAM-based weight support system is lightweight
and safe, has high power-weight ratio, and is easy to attach
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Fig. 8. Statistical comparisons with bar plots of the vastus medialis muscle and the vastus lateralis muscle %MVC across all subjects. Blue bars show the normal
squat movement, green bars show the one-leg squat movement without weight support, red bars show the one-leg squat movement with EMG-based weight
support, and yellow bars show the one-leg squat movement with constant force support. (a) 0.2-Hz squat movement. (b)0.5-Hz squat movement.

to the ceiling or a small gantry, the system can potentially
be useful not only for rehabilitation but also for industrial
applications.

Although we focused on assisting one particular movement,
i.e., squatting, it would be possible to apply our weight support
system to assist other kinds of movements such as stepping
or walking by using the estimated torque from EMG signals
with considering phase difference between the left leg and right
leg movements. Moreover, we can possibly use our developed
weight support system with constant assist force to simply
compensate the gravity, but with much wider movement range
than existing devices so that the weight support system can help
a therapist when the therapist is nearby a patient. This gravity
compensation strategy can be also useful for the industrial
applications, such as the load carriage assistance.

To further improve the force control performance of the
weight support, it can be beneficial to explicitly take hysteresis
model of the PAM into account. In addition, in this study, we
used load cells only for the calibration and did not use it for
force feedback control since there is delay in the air-pressure-
based control system. However, using the load cell feedback
for online adaptation of the parameters of the weight support
system would be one of the interesting directions as a part of
future study.

APPENDIX

In this appendix, we explain the Hill–Stroeve model used in
(6). h(ηi, ξi) and k(ξi) are computed as follows:

h(ηi, ξi) =
1 + tanh(a1η̇

i − a2)

b2
− b1e

−2.6(ξi−1) (15)

k(ξi) = 0.32 + 0.71e−1.112(ξi−1)

× sin
(
3.722(ξi − 0.656)

)
(16)

where ξi = (li(θ)/li,n) and ηi = ( ˙ξi(θ)/vi,max), vi,max = 3.0,
li(θ) is the current length of muscle i, li,n is its natural length,
and vi,max is its maximum contraction rate. In this paper, the
natural muscle length is approximately set as the same to

the link length. The current muscle length is computed by
adding partial periphery length of the joint pulley to the natural
muscle length with considering the current joint angle. b1 =
[1− tanh{a1(1 + a2)}]/b2, and b2 = tanh{a1(1 + a2)}. The
parameters a1 and a2 depend on the muscle type, and the
approximate range of values for a1 and a2 are a1 = 1.6−2.7
and 2.9–3.8 and a2 = −0.05−0.1 and −0.01–0.1 for fast and
slow fibers, respectively. In this paper, we defined these param-
eters for each muscles experimentally by repeating the cross-
validation to minimize the error of torque estimation. The fmax

for the muscles were determined anatomical information [27];
and we used f1

max = 975 N, f2
max = 3000 N, f3

max = 2250 N,
f4
max = 2250 N, f5

max = 1125 N, f6
max = 1875 N, and f7

max =
1875 N.
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