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Abstract We propose approximating a Poincaré map of
biped walking dynamics using Gaussian processes. We lo-
cally optimize parameters of a given biped walking con-
troller based on the approximated Poincaré map. By using
Gaussian processes, we can estimate a probability distri-
bution of a target nonlinear function with a given covari-
ance. Thus, an optimization method can take the uncertainty
of approximated maps into account throughout the learning
process. We use a reinforcement learning (RL) method as
the optimization method. Although RL is a useful non-linear
optimizer, it is usually difficult to apply RL to real robotic
systems due to the large number of iterations required to ac-
quire suitable policies. In this study, we first approximated
the Poincaré map by using data from a real robot, and then
applied RL using the estimated map in order to optimize
stepping and walking policies. We show that we can im-
prove stepping and walking policies both in simulated and
real environments. Experimental validation on a humanoid
robot of the approach is presented.
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1 Introduction

Local stability of biped walking patterns has been evaluated
using Poincaré maps (McGeer 1990; der Linde 1999). If
a dynamical model of a biped robot and a ground contact
model are available, a Poincaré map can be derived analyt-
ically for a specified periodic orbit (Westervelt et al. 2004;
Shiriaev et al. 2005). However, in real environments, the cor-
rect robot model and the ground contact model are difficult
to identify. Therefore, we consider representing a Poincaré
map by using a nonparametric representation based on sam-
pled data from the real environment.

As the amount of data increases, the complexity of the
Poincaré map model can be flexibly increased if we use a
nonparametric approximation method such as a Gaussian
Process (Rasmussen and Williams 2006). We try to lo-
cally optimize parameters of a given biped walking con-
troller based on the approximated Poincaré map. We use
a reinforcement learning (RL) method as the optimization
method.

A Gaussian process model allows us to estimate the prob-
ability distribution of a target nonlinear function with a
given covariance. Gaussian processes can estimate the ac-
curacy of the approximated function based on the density
of the sampled data. This is beneficial, as it is difficult to
uniformly collect data from a real robot due to unknown dy-
namics. By using this stochastic model, RL can take the ac-
curacy of the approximated model into account throughout
the learning process.

RL does not require a precise environmental model, and
can be a useful technique to improve task performance of
real robots. However, one drawback of using RL is that
it usually requires a large number of iterations to improve
policies. For this reason applications of RL to real envi-
ronments have been limited (Benbrahim and Franklin 1997;

mailto:xmorimo@atr.jp
mailto:cga@cs.cmu.edu


Auton Robot

(A) (B)

Fig. 1 (A) 3D biped simulation model. Height: 1.6 m, total weight:
95 kg. (B) Small humanoid robot used in the experiment

Morimoto and Doya 2001; Tedrake et al. 2004; Morimoto
and Atkeson 2007; Matsubara et al. 2006; Endo et al. 2008;
Peters and Schaal 2008).

Methods to improve policy parameters by using inaccu-
rate models have been studied in Atkeson and Schaal (1997),
Atkeson (1998), Abbeel et al. (2006). In our approach, we
propose the use of a task specific stochastic model instead
of using a robot in a real environment to improve a pol-
icy.

In this study, we focus on improving the locomotive per-
formance of biped robots as an application of our learning
framework. The dynamics of biped robots characteristically
include contact and collision with the ground. Modeling the
interaction with the ground is difficult in general. Using RL
methods can be a suitable approach to improve a walking
policy. We directly approximate Poincaré maps of stepping
and walking dynamics without explicitly identifying rigid
body inertial parameters and without the use of a ground
contact model.

To show the learning performance on robots which have
different kinematics and dynamics, we apply our learning
framework to a 3D biped simulation model (see Fig. 1(A))
and a small humanoid robot (see Fig. 1(B)).

In our approach, 1) we first construct a stepping and a
walking controller (Morimoto et al. 2006, 2008) introduced
in Sect. 2. We use simple periodic functions (sinusoids) as
desired joint trajectories, where the phases of the sinusoids
are modulated by the phase of the robot dynamics. Then,
2) we control the amplitude of the sinusoids according to
the current state of the robot to improve locomotive perfor-
mance.

In Sect. 3, our learning method, which uses approximated
Poincaré maps of stepping and walking dynamics is intro-
duced. In Sect. 4, we explain how we apply a Gaussian
process model to approximate stepping and walking dynam-
ics. In Sect. 5, we describe implementation of a RL method
for our learning framework, that uses the dynamics approx-
imated by a Gaussian process.

Fig. 2 Joint index of biped model: (A) Roll joints for lateral move-
ments. (B) Pitch joints for lateral and forward movements

2 Periodic pattern generator

Our biped controller uses a coupled oscillator model to mod-
ulate the phase of sinusoidal patterns. The aim of using a
coupled oscillator model is to synchronize periodic patterns
generated by the controller with the dynamics of the robot.
To use the coupled oscillator model, detection of the phase
of the robot is needed. We introduce a method to detect ro-
bot phase in Sect. 2.1. We briefly explain phase coordination
for biped walking in Sect. 2.2. We use simple sinusoidal pat-
terns as nominal trajectories for each joint. We describe the
design of the nominal trajectories for stepping movements in
Sect. 2.3, and walking movements in Sect. 2.4. Conventions
for representing joint movement are presented in Fig. 2.

2.1 Phase detection

By using the oscillator model, we can independently design
the phase dynamics and amplitude of periodic walking pat-
terns (Tsuchiya et al. 2003). However, to take the sensory
information into account in the oscillator system, we need
to explicitly detect the phase of the robot dynamics.

As shown by our previous study (Morimoto et al. 2006,
2008), we can use the center of pressure ycop and the veloc-
ity of the center of pressure ẏcop to detect the phase of the
robot dynamics:

φ(ycop) = − arctan

(
ẏcop

ycop

)
, (1)

where ycop = (ycop, ẏcop) (see Fig. 3). We use a simplified
COP detection method introduced in Morimoto et al. (2006,
2008).

2.2 Phase coordination

In this study, we use four oscillators with phases φi
c, where

i = 1,2,3,4. We introduce coupling between the oscillators
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Fig. 3 (A) Inverted pendulum model represented by the center of pres-
sure (COP) and the center of mass (COM). (B) ψ roll denotes the roll
angle of the pendulum. (C) ψpitch denotes the pitch angle of the pen-
dulum

Fig. 4 Phase coordination. We use four oscillators with phases
{φ1

c , φ2
c , φ3

c , φ4
c } to make symmetric patterns for a lateral movement

with the left and right limbs, and also to make symmetric patterns for a
forward movement with the left and right limbs. Arrows “→” indicate
phase advance, e.g., φ2

c = φ1
c + π

2 and φ3
c = φ1

c + π

and the phase of the robot dynamics φ(ycop) in (1) to regu-
late the desired phase relationship between the oscillators:

φ̇i
c = ωc + Kc sin(φ(ycop) − φi

c + φi
d), (2)

where φi
d is the desired phase difference, Kc is a coupling

constant, and ωc is the natural angular frequency of oscilla-
tors.

We use four desired phase differences, {φ1
d,φ2

d ,φ3
d ,φ4

d} =
{− 1

2π,0.0, 1
2π,π}, to make symmetric patterns for stepping

movement with the left and right limbs, and also to make
symmetric patterns for forward movement with the left and
right limbs. Figure 4 shows the phase coordination.

2.3 Desired joint angles

1) Roll joint movements: We introduce a controller to gen-
erate lateral movement. We control the hip joints θhroll and
the ankle joints θaroll (Fig. 2(A)) for this movement. Desired

joint angles for each joint are:

θd
hroll(φc) = Ahroll sin(φc), (3)

θd
aroll(φc) = −Aaroll sin(φc), (4)

where Ahroll and Aaroll are the amplitudes of a sinusoidal
function for lateral movements at the hip and the ankle
joints, and we use an oscillator with the phase φc = φ1

c .
2) Pitch joint movements: To achieve foot clearance, we

generate vertical movement of the feet (Fig. 2(B)) by using
simple sinusoidal trajectories:

θd
hpitch(φc) = Apitch sin(φc) + θ res

hpitch ,

θd
kpitch(φc) = −2Apitch sin(φc) + θ res

kpitch , (5)

θd
apitch(φc) = −Apitch sin(φc) + θ res

apitch ,

where Apitch is the amplitude of a sinusoidal function. θ res
hpitch ,

θ res
kpitch , θ res

apitch represent the rest posture of the hip, knee, and
ankle joints respectively. We use the oscillator with phase
φc = φ1

c for right limb movement and use the oscillator with
phase φc = φ3

c , which has phase difference of φ3
c = φ1

c + π ,
for left limb movement as in Fig. 4.

2.4 Additional pitch joint movements for walking
behaviors

To walk forward, we use an additional sinusoidal trajectory.
Thus, the desired nominal trajectories for the right hip and
ankle pitch joints become:

θ
d_walk
hpitch = Awalk sin(φ2

c ) + θd
hpitch(φ

1
c ),

(6)
θ

d_walk
apitch = −Awalk sin(φ2

c ) + θd
apitch(φ

1
c ).

We use the phase φ2
c , which has a 1

2π phase difference of φ1
c

for the right limb. We use φ3
c and φ4

c for the left limb instead
of φ1

c and φ2
c .

3 Learning framework

We consider approximating Poincaré maps for stepping and
walking dynamics to improve task performance through
model-based reinforcement learning (Kuvayev and Sutton
1996). A number of biped walking studies have empha-
sized that humanoid robots have inverted pendulum dynam-
ics (see Fig. 3), with the top of the pendulum at the cen-
ter of mass and the base at the center of pressure. Control
strategies to stabilize such dynamics have been proposed
(Miyazaki and Arimoto 1981; Miura and Shimoyama 1984;
Sugihara and Nakamura 2002; Hyon et al. 2007). In this
study, we propose using the state of the inverted pendulum
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Fig. 5 Step 2 and 3 in Algorithm 1. Apply the current policy with
fixed policy parameters w to the actual robot dynamics and sample
data. Generate a Gaussian process model which represents the stepping
and walking dynamics

Algorithm 1
1. Initialize policy parameters.
2. Apply the current policy to the actual robot dynamics and
sample data at the defined Poincaré section (see Fig. 5).
3. Generate a Gaussian process model which represents
the stepping and walking dynamics in (7).
4. Update policy parameters by applying a reinforcement
learning method to the acquired Gaussian process (see
Fig. 6).
5. If the policy is not improved, terminate the iteration.
Otherwise, go back to step 2.

as the input state for the learning system to make learning
tractable.

We assume that nominal stepping and walking controllers
are provided (see Sect. 2), and our learning system improves
the performance of these controllers. Since the nominal con-
troller can generate periodic movements, we only consider
the pendulum state at the Poincaré section.

For example, we consider the dynamics ξ̇ = g(ξ) of a
state vector ξ ∈ Rn. The Poincaré map is a mapping from
an n − 1 dimensional surface S defined in the state space
to itself (Strogatz 1994). If ξ(k) ∈ S is the k-th intersection,
then the Poincaré map h is defined by ξ(k+1) = h(ξ(k)). In
our study, we defined the section for which the roll derivative
of the pendulum equals zero (ψ̇ roll = 0) (see Fig. 3).

Fig. 6 Step 4 in Algorithm 1. Update policy parameters w by applying
a reinforcement learning method to the acquired inverted pendulum
model represented by a Gaussian process

The policy of the learning system outputs the next action
only at this section. We also assume that we can represent
the Poincaré map by a stochastic model. If x(k) is the k-th
intersection and u(k) is the control output at the intersection,
the model is defined by:

x(k + 1) = f(x(k),u(k)) + n(k), (7)

where x = (ψ roll) for stepping and x = (ψ roll,ψpitch, ψ̇pitch)

for walking (see Fig. 3). n(k) is the noise input. f(x(k),u(k))

represents the deterministic part of the Poincaré map.
To improve task performance, we stochastically modu-

late the amplitude of the sinusoidal patterns according to the
current policy πw:

πw(x(k),u(k)) = p(u(k) | x(k);w), (8)

where w is the parameter vector of the policy πw. In the
following sections, we explain how we approximate the sto-
chastic maps (7), and how we acquire the control policy πw.

In our learning framework, we improve the approximated
Poincaré map and the policy iteratively (see Algorithm 1).
We first sample data from a simulated model or a real robot
by using the current policy for a Gaussian process regres-
sion as in Fig. 5, and then improve the policy by using the
Poincaré map approximated by the Gaussian process as in
Fig. 6.



Auton Robot

4 Non-parametric system identification of Poincaré
map

We use a Gaussian process (GP) (Williams and Rasmussen
1996) to approximate the Poincaré map in (7). Gaussian
processes provide us a stochastic representation of an ap-
proximated function. With Gaussian processes for regres-
sion, we assume that the output values yi (i = 1, . . . ,N ) are
sampled from a zero-mean Gaussian whose covariance ma-
trix is a function of the input vectors zi (i = 1, . . . ,N ):

p(y1, . . . , yN |z1, . . . , zN) = N (y1, . . . , yN | 0,K), (9)

where K is an covariance matrix of input vectors with ele-
ments Kij = κ(zi , zj ). Here, we used a squared exponential
covariance function (Rasmussen and Williams 2006):

κ(zi , zj ) = v0 exp

(
−1

2

Nd∑
k=1

vd
k (zik − zjk)

2

)
+ v1δij , (10)

where δij is Kronecker delta. zik and zjk are k-th element
of i-th and j -th input vectors respectively. v0, v1, and vd

k are
parameters for the covariance matrix. Nd denotes the num-
ber of input dimensions. These parameters can be optimized
by using a type-II maximum likelihood method (Williams
and Rasmussen 1996). A covariance function introduces
similarity between data points. By using the squared expo-
nential covariance function, closely placed data points are
similar. This similarity measure works well in many appli-
cations and is widely used (Rasmussen and Williams 2006;
Bishop 2006; Ko and Fox 2009).

Bayesian prediction of an output yN+1 corresponding to
a new input zN+1 is given as:

p(yN+1 | z1, . . . , zN, zN+1, y1, . . . , yN) = N (yN+1 | μ,σ 2),

(11)

where

μ = k(zN+1)
T K−1y, (12)

σ 2 = κ(zN+1, zN+1) − k(zN+1)
T K−1k(zN+1). (13)

Here the vectors y and k(zN+1) are defined as y = (y1, . . . ,

yN) and k(zN+1) = [κ(z1, zN+1), . . . , κ(zN, zN+1)]T re-
spectively.

4.1 Simple example

To show how the Gaussian process regression method
works, we applied the GP regression to approximate a si-
nusoidal function:

y = sin(z) + n, (14)

Fig. 7 Simple example of Gaussian process regression. The
dash-dotted line shows the target sinusoidal function. Circles show
sampled data points from the target function with additive noise. The
solid line shows mean output of the predictive distribution represented
by the Gaussian process model. Dashed lines show the standard devia-
tion of the predictive distribution

where n ∼ N (0,0.01) denotes output noise. We used the
squared exponential covariance function in (10) with the pa-
rameters v0 = 1.0, v1 = 0.01, and vd

k = 1.0.
We sampled ten data points zi (i = 1, . . . ,10) from a uni-

form distribution ranged over 0 ≤ z ≤ 2π . Figure 7 shows a
predictive distribution of an approximated sinusoidal func-
tion. Since we only sampled ten data points, interpolated re-
gions have large approximation errors. The uncertainty of
the interpolated regions are represented by large standard
deviations.

An important aspect of the GP regression is that the un-
certainty of an approximated function caused by the small
number of training samples can be evaluated. As in Fig. 7,
the standard deviation of the region where sampled data is
not available becomes large.

4.2 Application to Poincaré map approximation

We use the GP model to represent how the pendulum model
in Fig. 3 behaves with a controller, a robot, actuators, and
ground contact models.

The input vector z for the Gaussian process is com-
posed of the current state x(k) and control input u(k) : z =
(x(k)T ,u(k)T )T . The output value y is a component of the
state vector at the next intersection x(k + 1), and the control
output u(k) is used to modulate parameters of the stepping
and walking controllers. We modulate amplitudes of the si-
nusoidal patterns that are used as desired joint angles.

The predictive distribution represented by this Gaussian
process method is used to improve biped stepping and walk-
ing controllers.
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5 Policy improvement by using a reinforcement
learning method

Here, we explain how we applied RL to our biped step-
ping and walking tasks. RL has been used to improve poli-
cies for challenging tasks (Riedmiller et al. 2009; Howard
et al. 2009). We used a policy gradient method proposed by
(Kimura and Kobayashi 1998), to implement the RL frame-
work. This learning method was used in biped learning stud-
ies (Tedrake et al. 2004; Matsubara et al. 2006).

Policy gradient methods are considered as robust learn-
ing methods when states for the learning system are partially
observable (Jaakkola et al. 1995; Baird and Moore 1999;
Meuleau et al. 2001). Convergence properties of policy gra-
dient methods with function approximators have been stud-
ied in Sutton et al. (2000), Konda and Tsitsiklis (2003).

Since we applied RL to an approximated Poincaré map
instead of a real environment, we did not care much about
convergence speed. However, using natural policy gradient
methods (Peters and Schaal 2008; Bagnell and Schneider
2003; Kakade 2002) would reduce the time required for the
entire learning process.

The basic goal is to find a policy πw(x,u) = p(u | x;w)

that maximizes the expectation of the discounted accumu-
lated reward:

E{V (k)|πw} = E

{ ∞∑
i=k

γ i−kr(i)

∣∣∣∣∣πw

}
, (15)

where r denotes reward, V (k) is the actual return, w is the
parameter vector of the policy πw, and γ , 0 ≤ γ < 1, is the
discount factor.

In policy gradient methods, we calculate the gradient di-
rection of the expectation of the actual return with respect to
the parameters of a policy w. Kimura and Kobayashi (1998)
suggested that we can estimate the expectation of the gradi-
ent direction as:

∂

∂w
E{V (0) | πw} ≈ E

{ ∞∑
k=0

(V (k) − V̂ (x))
∂ lnπw

∂w

∣∣∣∣∣πw

}
,

(16)

where V̂ (x) is an approximation of the value function for a
policy πw: V πw(x) = E{V (k) | x(k) = x,πw}.

5.1 Value function approximation

The value function is approximated using a normalized
Gaussian network (Doya 2000):

V̂ (x) =
N∑

i=1

wv
i bi(x), (17)

where wv
i is a i-th parameter of the approximated value

function, and N is the number of basis functions bi(x). An
approximation error of the value function is represented by
the temporal difference (TD) error (Sutton and Barto 1998):

δ(k) = r(k + 1) + γ V̂ (x(k + 1)) − V̂ (x(k)), (18)

We update the parameters of the value function approxima-
tor using the TD(0) method (Sutton and Barto 1998):

wv
i (k + 1) = wv

i (k) + αδ(k)bi(x(k)), (19)

where α is the learning rate.

5.2 Policy parameter update

We update the parameters of a policy w by using the es-
timated gradient direction in (16). Kimura and Kobayashi
(1998) showed that we can estimate the gradient direction
by using the TD error:

E

{ ∞∑
k=0

(V (k) − V̂ (x(k)))
∂ lnπw

w

∣∣∣∣∣πw

}

= E

{ ∞∑
k=0

δ(k)e(k)

∣∣∣∣∣πw

}
, (20)

where e is the eligibility trace of the parameter w. Eligi-
bility traces indicate which parameters are eligible for the
TD-error and are updated as

e(k + 1) = ηe(k) + ∂ lnπw(x(k),u(k))

∂w

∣∣∣∣
w=w(k)

, (21)

where η is the decay factor for the eligibility trace. Equation
(20) can be derived if the condition η = γ is satisfied. The
parameter w is updated as:

w(k + 1) = w(k) + βδ(k)e(k). (22)

5.3 Biped stepping and walking policy

We construct the biped stepping and walking policies based
on a normal distribution:

πw(x,u) = N (μ(x;wμ),�(x;wσ )) (23)

where u is the output vector and � is the covariance matrix
of the policy πw. In this study, we defined the covariance
matrix as a diagonal matrix, where the j -th diagonal element
is represented as σj . The j -th element of the mean output μ

is modeled by a normalized Gaussian network:

μj (x) =
N∑

i=1

w
μj

i bi(x). (24)
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Table 1 Parameters of the periodic pattern generator for each experi-
ment

Simulated model Real robot

Stepping Walking Stepping Walking

ωc 3.5 3.5 6.3 6.3

Kc 10.0 10.0 9.4 9.4

Ahroll 4.0 3.5 2.5 5.0

Aaroll 4.0 3.5 8.5 9.0

Apitch 6.0 7.0 4.0 4.0

Table 2 Parameters of policy gradient method

γ α η β σ0

0.95 0.3 0.3 0.3 0.5

Here, w
μj

i denotes the i-th parameter for j -th output of the
policy πw, and N is the number of basis functions. We repre-
sent the diagonal element of the covariance matrix � using
a sigmoid function (Kimura and Kobayashi 1998):

σj (x) = σ0

1 + exp(−σw
j (x))

, where σw
j (x) =

N∑
i=1

w
σj

i bi(x),

(25)

and σ0 denotes the scaling parameter. w
σj

i denotes the i-th
parameter for the j -th diagonal element of the covariance
matrix. We update the parameters by applying the update
rules in (22) and (21).

We use same basis functions bi(x) in (17), (24), and (25).

6 Simulation

We applied our proposed method to the simple 3D simulated
biped model in Fig. 1(A). Parameters used in the controllers
are summarized in Table 1. Parameters used in the policy
gradient method are summarized in Table 2.

6.1 Improvement of biped stepping performance

We applied our proposed method to improve stepping in
place.

We selected amplitudes of the pitch joint movements as
the control output: u(k) = Astep(k). Then, the desired joint
angles in (5) become

θd
hpitch(φc) = (Apitch + Astep) sin(φc) + θ res

hpitch ,

θd
kpitch(φc) = −2(Apitch + Astep) sin(φc) + θ res

kpitch , (26)

θd
apitch(φc) = −(Apitch + Astep) sin(φc) + θ res

apitch .

We flip the sign of the roll angle ψ roll in the state vec-
tor x when the sign of COP in the lateral (y) direction (see
Fig. 3(A)) changes so that we can use the same policy for
the left stance phase and the right stance phase.

We defined the target of the stepping task to keep the de-
sired state at ψ roll

d . We use a reward function:

r = −K(ψ roll
d − ψ roll)2 (27)

for this stepping task, where the desired roll angle ψ roll
d =

2.0◦ and K = 0.1. The learning system also receives a nega-
tive reward r = −1 if the biped model falls over. We con-
sider that the biped model falls over when the condition
ψ roll < 0.0◦ is satisfied (the COM is outside of the stance
foot).

For the Gaussian process (GP) model, we sampled 20
data sets {x(k + 1),x(k),u(k)} from the simulated environ-
ments (at step 2 of Algorithm 1).

We compare learning performance of the proposed
method using the Gaussian process model with that of using
the full model. The full model means that we run the dynam-
ics simulator of the biped model to learn stepping policies.

Figure 8 compared learning performance on the stepping
task by using the GP model and by using the full model. At
each visit to the Poincaré section, a reward is given accord-
ing to the performance of a policy. The average reward (ver-
tical axis) shows the average acquired reward at each visit to
the Poincaré section.

Although the variance of the learning performance is
larger in early stage of the learning process if we used the GP
model, the performance of the acquired policies through the
GP model is comparable to the policies acquired through the
full model after 10 learning trials. Thus, at least for this par-
ticular example, this demonstrates that a full dynamic model
is not necessary in order to acquire a policy to achieve suf-
ficient task performance. Especially in extensive simulation
studies, we can save computation time, and still may be able
to acquire comparable performance.

Furthermore, the acquired stepping policies based on the
GP model slightly outperformed the policies acquired by
the full model after 8th trial. This difference was signifi-
cant in terms of the Student’s t-test with significance level
0.05. Since the gradient estimation of policy parameters
can be biased with limited sample data, using the approx-
imated model with a Bayesian estimation method such as
the Gaussian process regression would generate better sam-
ple data for the gradient estimation. Therefore, it would be
interesting to compare Bayesian RL approaches (Dearden et
al. 1999; Ghavamzadeh and Engel 2007) with the proposed
method as a future study in addition to applying the pro-
posed method to other examples to show how this fact can
be generalized to other applications.

Figure 9 shows policies acquired by using the GP model
and the full model. Similar policies were acquired in the
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Fig. 8 A comparison of learning performance. At each visit to the
Poincaré section, reward is given according to the performance of a
policy. The average reward (vertical axis) shows averaged acquired re-
ward at each visit to the Poincaré section. The solid line represents the
performance of the proposed learning method which used the acquired
Gaussian process model. The dashed line represents the learning per-
formance of the learning method which used the full dynamics simula-
tion. The result shows the average performance of five simulation runs.
Error bars show the standard deviation

Fig. 9 Acquired stepping policies. The solid line represents acquired
policies using the GP model. The dashed line represents acquired poli-
cies using the full model. The results show an average policy of five
simulation runs. Error bars show the standard deviation

region 0.0◦ < ψ roll < 4.0◦, the region of the state space
where the policies mainly explored. Outside of the region
4.0◦ ≤ ψ roll, the policies are different because the data is not
frequently sampled from this region. From 3 to 5 basis func-
tions are allocated to represent the mean output of the poli-
cies in (24). Therefore, from 3 to 5 parameters were needed
to be learned for the mean output. Because we adaptively al-
located the basis functions, the number of basis functions are
different in different simulation runs (Morimoto and Doya
2001).

We also investigated the robustness of an acquired step-
ping controller. Figure 10 show the return map of the pen-
dulum state ψ roll. Since we change the output u(k) only at
the Poincaré section, it takes two steps to evaluate the con-

Fig. 10 Return map of φroll. We show relationship between φroll(k)

and φroll(k + 2). The dashed line shows linear approximation of the
return map

trol performance of the control output from an acquired pol-
icy. We show relationship between φroll(k) and φroll(k + 2).
To generate the return map, we disturbed the stepping con-
troller for 0.2 s right after the COP crosses zero by pushing
the biped model in the horizontal (y) direction (see Fig. 2)
with randomly generated force F , where F is sampled from
a uniform distribution over −40 ≤ F ≤ 40 N.

The dashed line shows the linear approximation of the
return map. Since the coefficient of the linear approximation
is much smaller than one, this result shows that the acquired
policy was able to locally stabilize the stepping dynamics.
The approximated fixed point φroll = 2.3◦ is indicated by
the circle and is close to the desired φroll

d = 2.0◦.

6.2 Improvement of biped walking performance

We also apply our proposed method to improve walking per-
formance. We modulate the amplitude Awalk in (6) to gener-
ate forward movement for the biped walking task. The target
of the walking task is to increase the walking velocity. Since
the angular velocity of the pendulum ψ̇pitch (see Fig. 3(C))
at the Poincaré section corresponds to the walking velocity,
we use the reward function:

r = K(ψ̇pitch) (28)

for this biped walking task, where K = 0.1. The learning
system also receives a negative reward r = −1 if the biped
model falls over.

For the Gaussian process model, we sampled 100 data
sets from the simulated environments. Figure 11 shows the
initial performance of the biped walking policy. Figure 12
shows the walking performance after one iteration of the
proposed method. One iteration means that 1) acquisition
of an approximated Poincaré map from sampled data as in
Fig. 5. 2) acquisition of a stepping policy using the acquired
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Fig. 11 Initial walking pattern. The thick line represents the starting position. Initially, the simulated robot explores around the starting position.
Time proceeds from left to right

Fig. 12 Improved walking pattern after one iteration of the proposed learning process. Walking speed is 0.14 m/sec. The thick line represents the
starting position. Time proceeds from left to right

Fig. 13 Approximated stepping dynamics of the small size hu-
manoid robot by a Gaussian process. The input vector is defined as
z = (ψ roll(k),Aa_step(k)), and the output is define as y = (ψ roll(k+1))

(see (12))

Poincaré map as in Fig. 6. 3) application of the acquired pol-
icy to the simulated robot.

This result suggests that approximated dynamics can be
used to improve biped walking performance.

7 Experimental results

We applied our proposed method to a small size humanoid
robot (see Fig. 1(B)). Parameters used in the controllers are
summarized in Table 1.

7.1 Improvement of biped stepping performance

We use the roll angle x = (ψ roll) defined by the pendulum
model (see Fig. 3) as the state. We selected amplitudes of the
ankle roll movements as the control output: u(k) = Aa_step.
Thus, the desired joint angle in (4) becomes

θd
aroll(φc) = −(Aaroll + Aa_step) sin(φc). (29)

Since the real robot has relatively wide feet, modulating
the ankle roll joints is an easy way to control the roll angle
x = (ψ roll). Automatic selection of the proper action vari-
ables for a given task would be an interesting research topic
for future study.

We use the reward function:

r = −K(ψ roll
d − ψ roll)2 (30)

for this stepping task, where the desired roll angle ψ roll
d =

0.0◦ and K = 0.1. The learning system also receives a neg-
ative reward r = −1 if the biped model falls over.

For the Gaussian process model, we sampled 20 data
sets from the real environment. Figure 13 shows an approxi-
mated Poincaré map for stepping dynamics of the small size
humanoid robot using a Gaussian process. Here we define
the input vector as z = (ψ roll(k),Aa_step(k)) and the out-
put as y = (ψ roll(k + 1)). We apply the reinforcement learn-
ing algorithm to this acquired Poincaré map for stepping dy-
namics to improve stepping performance.

Figure 14 shows the roll angle ψ roll at the Poincaré sec-
tion ψ̇ roll = 0. This result suggests that a stepping policy was
acquired by using our proposed method, and it can keep the
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Fig. 14 The roll angle ψ roll at the Poincaré section ψ̇ roll = 0 (solid
line). The dash-dotted line represents the desired angle for this stepping
task. We used a policy acquired by the proposed learning method

Fig. 15 Acquired stepping movement of the real robot after one it-
eration of the proposed learning process. One iteration means that 1)
acquisition of an approximated Poincaré map from sampled real data as
in Fig. 5. 2) acquisition of a stepping policy using the acquired Poincaré
map as in Fig. 6. 3) application of the acquired policy to the real robot

roll state ψ roll around the desired angle (0.0◦). An average
angle from 10 to 40 steps was 0.12◦.

Figure 15 shows the acquired stepping movement of
the real robot after one iteration of the proposed learning
process.

Again, one iteration means that 1) acquisition of an ap-
proximated Poincaré map from sampled real data as in
Fig. 5. 2) acquisition of a stepping policy using the acquired
Poincaré map as in Fig. 6. 3) application of the acquired pol-
icy to the real robot.

7.2 Improvement of biped walking performance

We also applied our method to improve biped walking per-
formance of the humanoid robot. We use x = (ψ roll,ψpitch,

ψ̇pitch) as the state and modulate Awalk in (6) as the action
of the learning system.

We use the reward function based on the pitch derivative
ψ̇pitch that corresponds to the walking velocity:

r = 1

T

∫ T

0
ψ̇pitch(t)dt (31)

for this walking task, where T is the time required for mov-
ing from a Poincaré section to the next section, which is ap-
proximately the time for one cycle of walking. We used the
time integral of the angular velocity ψ̇pitch rather than the in-
stantaneous angular velocity at the defined section because
the instantaneous value was not consistently related to the
walking velocity in the real environment. Since this reward
can not be simply represented by the state x at the section,
we also approximated a stochastic model of the reward func-
tion from the data acquired from the real environment by
using another Gaussian process. The learning system also
receives a negative reward r = −1 if the biped model falls
over.

For the Gaussian process model, we sampled 100 data
sets from the real environments. Figure 16 shows initial per-
formance of the biped walking controller. The initial policy
only generates random steps and the humanoid robot could
not walk forward.

Figure 17 shows improved walking performance after the
first iteration of our learning framework. The humanoid ro-
bot could walk forward with the improved policy.

Figure 18 shows improved walking performance after the
second iteration of our learning framework. The humanoid
robot could walk faster. We also tried additional learning
iterations. However, the walking performance did not sig-
nificantly improve. We may need to use different state rep-
resentations and/or reward functions to acquire additional
improvement of the walking policy.

8 Discussion

8.1 Stochastic Poincaré maps

In this study, we used a Gaussian process model to represent
Poincaré maps. We determined the number of sampled data
to represent the covariance matrix in the Gaussian process
model so that the prediction error of the state at the next
Poincaré section becomes smaller than a given threshold.

Sparse Gaussian process methods (Smola and Bartlett
2001; Snelson and Ghahramani 2006; Candela and Ras-
mussen 2005) can provide a method to find a sufficient num-
ber of data points to model the Poincaré maps.

By using a Gaussian process model, we can stochasti-
cally represent accuracy of the Poincaré maps based on the
density of the sampled data.
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Fig. 16 Initial walking pattern. The line on the floor represents the starting position. Initially, the humanoid robot explores around the starting
position. Time proceeds from left to right

Fig. 17 Improved walking pattern after the first iteration of the proposed learning process. Estimated walking speed is 2.7 × 10−2 m/sec

Fig. 18 Improved walking pattern after the second iteration of the proposed learning process. Estimated walking speed is 4.5 × 10−2 m/sec. The
robot could walk faster with this policy than after the first iteration

In Byl and Tedrake (2008), a stochastic return map is
used to represent uncertainty of the ground contact condi-
tions. The stochastic stability when a compass-gait is walk-
ing on randomly generated terrain is studied. As Byl and
Tedrake (2008) pointed out, stochastic representation of the
walking dynamics can be useful to acquire robust walking
policies.

8.2 Application to other walking controllers

We applied the proposed learning method to control the am-
plitude of phase dependent sinusoidal patterns where the
phase is modulated according to the center of pressure.

However, application of the learning method is not nec-
essarily limited to the periodic pattern generator model (Mo-
rimoto et al. 2006, 2008).

Several biped control methods have been proposed and
applied to humanoid robots (Hirai et al. 1998; Kajita et al.
2007; Nagasaka et al. 1999, 2004; Sugihara and Nakamura
2005). Most of them use ZMP-based walking controllers.
These control methods rely on accuracy of the robot model
and tracking performance of high-gain PD controllers. Since

the ZMP-based controllers also use the inverted pendulum
model to approximate the full-body dynamics, modeling er-
rors are inevitable and feedback controllers to change de-
sired ZMP are necessary. To design these feedback con-
trollers, parameters need to be hand-tuned through experi-
ments. Our proposed learning method may potentially help
to tune parameters of the feedback controllers for ZMP-
based approaches.

8.3 Selection of reward functions

For the stepping task, the reward function is defined by a
squared error from a desired COM roll angle. For the walk-
ing task, the reward is given according to walking velocity.
In both tasks, negative reward is given when a biped robot
falls over. Since controlling the single support phase is the
goal for the stepping task, using COM and COP states is a
reasonable selection. For the walking task, moving forward
at a desired speed is one of the goals, and we can represent
this goal by including walking velocity in the reward func-
tion.
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Other reward functions can be adopted for the stepping
and the biped walking task. If we can measure energy con-
sumption of real biped robots, we can consider the en-
ergy cost as a negative reward (penalty). Similarity between
walking patterns of biped robots and human walking pat-
terns could be used to acquire a policy to generate natural
looking walking patterns. Ground reaction force can be used
as a negative reward to reduce impact forces when the swing
leg contacts the ground.

9 Conclusion

We propose using a nonparametric representation of approx-
imated Poincaré maps for biped stepping and walking dy-
namics and reinforcement learning (RL) to improve task
performance. In this study, we first approximate Poincaré
maps for stepping and walking dynamics by using data from
a simulated model or a real robot, then use the approxi-
mated maps for RL to improve stepping and walking poli-
cies. We explored using a Gaussian process to approximate
the Poincaré maps. By using a Gaussian process, we can es-
timate a probability distribution of the target nonlinear func-
tions with a given covariance. We showed that we could im-
prove stepping and walking policies by using a RL method
with approximated models both in simulated and real en-
vironments. Since we used different reward for the step-
ping and walking tasks, the results showed that our learning
framework can improve policies for different objective func-
tions. We applied the proposed control approach to a small
humanoid robot.

We evaluated robustness of the resulting stepping policy
by pushing the biped model in the horizontal direction and
analyzing the return map. We also showed robustness of the
resulting walking policy by applying the policy to a real en-
vironment. However, by only using one fixed policy, it is
difficult to cope with a large environmental change. There-
fore, it would be interesting to evaluate how our learning
algorithm can quickly adapt to environmental changes.

Compared to other biped learning approaches (e.g., Ben-
brahim and Franklin 1997; Tedrake et al. 2004; Morimoto
and Atkeson 2007), we do not directly use real environments
to improve biped walking policies. Therefore, our learning
framework requires smaller number of samples from the real
environment and can be applied to robots that have may de-
grees of freedom. On the other hand, our learning method
relies on environmental models. We take the reliability of
an acquired model into account in a policy improvement
process by representing the model with a probability distri-
bution. The estimated reliability of the acquired model can
be related to learning performance. We will analyze this re-
lationship in a future study.

In this study, we use a reinforcement learning method
(Kimura and Kobayashi 1998) to improve policy parame-
ters. In future work, we will consider using a dynamic pro-
gramming approach to efficiently update policy parameters
using the Gaussian process model (Rasmussen and Kuss
2004) since an analytical update using dynamic program-
ming may reduce the number of iterations to achieve better
task performance.

We will also explore convergence properties of the pro-
posed learning method.
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