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Abstract— In this study, we propose a control method for
movement assistive robots using measured signals from human
users. Some of the wearable assistive robots have mechanisms
that can be adjusted to human kinematics (e.g., adjustable link
length). However, since the human body has a complicated joint
structure, it is generally difficult to design an assistive robot
which mechanically well fits human users. We focus on the
development of a control algorithm to generate corresponding
movements of wearable assistive robots to that of human users
even when the kinematic structures of the assistive robot and the
human user are different. We first extract the latent kinematic
relationship between a human user and the assistive robot.
The extracted relationship is then used to control the assistive
robot by converting human behavior into the corresponding
joint angle trajectories of the robot. The proposed approach is
evaluated by a simulated robot model and our newly developed
exoskeleton robot.

I. INTRODUCTION

Assistive robots for patients and elderly people are seen

as an important research topic in robotics; particularly

movement assisting devices that have a wide variety of

applications including rehabilitation. Therefore, development

of movement assistive robots is becoming popular [1], [2],

[3], [4], [5], [6], [7]. Hitherto, however, most of the works

have focused on the development of hardware devices, while

the software needed to control a movement assistive robot

has not been intensively studied.

A significant difference in the requirements for controlling

a movement assistive robot as opposed to other types of

robots is that the robot needs to interact continuously and

physically with humans. From a hardware development point

of view, preparing adjustable mechanisms that can adapt to

the size of the human user is important to coordinate properly

the physical interaction between the robot and the human

user. However, since a human’s joint structure is complicated,

it is generally difficult to design an assistive robot which

mechanically well fits human users.

In this study, we propose a control method for movement

assistive robots using measured signals from the human user.

First, while the user is wearing the movement assistive robot,
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we simultaneously measure the joint angle trajectories of the

human user and those of the robot. Next, we ascertain the

kinematic relationship between user and robot movements.

To extract the latent kinematic relationship, we use canonical

correlation analysis (CCA) [8]. Since the human body has a

complicated joint structure and cannot be tightly fixed to a

movement assistive robot, finding the analytical kinematic

relationship is difficult. Therefore, we propose extracting

this relationship directly from the acquired data. However,

a problem with finding the kinematic relationship is that

both the human body and the movement assistive robot have

many degrees of freedom. Thus, the number of parameters

needed to represent the relationship between such systems

with high-degrees of freedom can be large. On the other

hand, human joint movements can be highly correlated

(synergistic [9]) for a particular behavior. In this case, the

estimated parameters may be overfitted for the acquired

data and the generalization performance of the extracted

relationship would be significantly worse. To cope with

this overfitting problem, we propose using an ARD (auto

relevance determination) approach [10]. More specifically,

we use variational Bayesian canonical correlation analysis

(VB-CCA) [11]. In this framework, we can select the correct

number of dimensions to describe the relationship between

a human user and the movement assistive robot from the

acquired data.

In addition to finding the kinematic relationship, we pro-

pose using an electromyography (EMG) signal to control the

movement assistive robot through the extracted kinematic

relationship. The EMG signal can be used as a feedforward

signal to control the movement assistive robot, while a

goniometer attached to the human body is used for feedback

control.

We evaluate how the combined system can be used to con-

trol a movement assistive robot using a simulated assistive

robot model together with our newly develop exoskeleton

robot (ATR eXoskeleton Robot, or XoR for short) (see also

Fig. 1)[12].

II. EXTRACTION OF LATENT KINEMATIC

RELATIONSHIPS

In this section, we introduce a method to extract the latent

kinematic relationship through finding a shared state space

between a human user and an assistive robot (see also Fig.

2). To extract the kinematic relationship, we apply canonical

correlation analysis (CCA) to the simultaneously acquired

movement data from the human user and the assistive robot.

Throughout this paper, we define that the vector x denotes
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Fig. 1. Our newly developed eXoskeleton Robot (XoR)[12]. Height: 1.5
m, Weight: 30 kg. XoR has ten degrees of freedom and six active joints.
Each active joint uses a hybrid actuator composed of air muscle and an
electric motor. XoR is designed to assist lower-limb movements in humans.

Fig. 2. Extracting the latent kinematic relationship through finding the
shared state space between a human user and an assistive robot.

the state of the human user and the vector y denotes the state

of the assistive robot.

A. Canonical Correlation Analysis (CCA)

Here, we briefly introduce canonical correlation analysis

(CCA) [8], which can be used to extract the latent relation-

ship between two random vectors.

We consider two random vectors x and y, where the state

vector of one observation is denoted by x ∈ X ⊂ Rdx

and the state vector of the other observation is denoted by

y ∈ Y ⊂ Rdy . CCA derives directions wx and wy such

that the correlation between two projected random variables

wxx and wyy is maximized.

Thus, CCA can be formulated as an optimization problem

in which the objective function is defined as

ρ = max
wx,wy

wT
x
Σxywy

√

wT
x
ΣxxwxwT

y
Σyywy

. (1)

where ρ is the correlation between projected values of both

observations on canonical vectors, and Σ is the covariance.

Since the solution of (1) is not affected by any rescaling of

the projections, the optimization problem can be rewritten

as:

max
wx,wy

wT
x
Σxywy (2)

subject to wT
x
Σxxwx = 1, wT

y
Σyywy = 1.

This problem can be solved by finding eigenvectors for a

generalized eigenvalue problem

(

0 Σxy

Σyx 0

)(

wx

wy

)

= ρ

(

Σxx 0
0 Σyy

)(

wx

wy

)

.

(3)

B. Variational CCA

The probabilistic model of CCA was proposed in [13].

This model assumes that the two observed random vectors

x and y are generated from the same latent vector z:

x = Wxz+ η
x

(4)

y = Wyz+ η
y
, (5)

where z ∈ Z ⊂ Rm and

P (z) = N (z|0, Im), (6)

P (η
x
) = N (η

x
|0,Σx), (7)

P (η
y
) = N (η

y
|0,Σy). (8)

Im is an m-dimensional identity matrix, Σx and Σy are

covariance matrices.

We generally do not know how many latent variables, i.e.,

the number of elements m in the latent vector z, are involved

in explaining the two observed random vectors. The easiest

way to determine the number of canonical correlations is

simply to use the same number of dimensions as that of

an observed vector with a smaller number of elements.

However, if the true number of canonical correlations is

smaller than the assumed number of dimensions, the standard

CCA model can be overfitted for a particular set of sample

data.

On the other hand, using this probabilistic CCA model, we

can introduce a sparse prior to the model so that the num-

ber of canonical correlations can be automatically selected

through a hierarchical Bayesian framework. This corresponds

to ARD. To do this, we use the variational CCA proposed in

[11]. Figure 3 shows a graphical model of the probabilistic

CCA with a hierarchical Bayesian framework.

The joint distribution of the probabilistic CCA can be

given as (see Fig. 3)

P (x,y, z,Θ)=P (x|z,Wx,Σx)P (y|z,Wy,Σy)P (z)P (Θ),
(9)

where the joint distribution of the parameters is:

P (Θ)=P (Wx|αx)P (Wy|αy)P (αx)P (αy)P (Σx)P (Σy).
(10)
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Fig. 3. Probabilistic CCA model with a hierarchical Bayesian framework.
The shading of variables x and y implies that these variables can be
observed (see also [14]). The rectangle labeled with N indicates that there
are N observations. z is the latent variable. Wx and Wy are weight
matrices. Σx and Σy are covariances of the random vectors x and y,
respectively. αx and αy determine the covariance of the weight matrices.

We use the conjugate priors as the prior distribution of the

parameters:

P (Wx|αx) =

dx
∏

j

N (wj
x
|0, (diag{αx})

−1), (11)

P (Wy|αx) =

dy
∏

j

N (wj
y
|0, (diag{αy})

−1), (12)

P (αx) =

m
∏

i

Γ(αi
x
|a0, b0i ), (13)

P (αy) =
m
∏

i

Γ(αi
y
|a0, b0i ), (14)

P (Σx) = W(Σx|K
0
x
, ν0

x
), (15)

P (Σy) = W(Σy|K
0
y
, ν0

y
), (16)

where Γ is the Gamma distribution and W is the Wishart

distribution (see [14] for more details). The hyper parameter

that controls the sparseness of the weight vector is repre-

sented by α = (α1, . . . , αm).
Since integrations to derive the marginal distribution,

P (x,y) =

∫

P (x,y, z,Θ)dzdΘ, (17)

are analytically intractable, we consider a variational approx-

imation to the true posterior distribution by introducing the

distribution Q(z,Θ). The lower bound of the log marginal

distribution is calculated as follows:

lnP (x,y) = ln

∫

P (x,y, z,Θ)dzdΘ

= ln

∫

Q(z,Θ)
P (x,y, z,Θ)

Q(z,Θ)
dzdΘ

≥

∫

Q(z,Θ) ln
P (x,y, z,Θ)

Q(z,Θ)
dzdΘ

= L(Q). (18)

We find that the difference between the log marginal distri-

bution and the lower bound L(Q) can be represented by the

Kullback-Leibler (KL) divergence between the true posterior

and the selected distribution Q(z,Θ) as

KL(Q||P ) = lnP (x,y) − L(Q), (19)

where the KL divergence is defined as

KL(Q||P ) = −

∫

Q(z,Θ) ln
P (z,Θ|x, z)

Q(z,Θ)
dzdΘ. (20)

Since the marginal log likelihood is only determined by the

observed data (x and y) and is not a function of distribution

Q, maximizing the lower bound L(Q) corresponds to min-

imizing the KL divergence between the true posterior and

distribution Q. Thus, if we can find an analytically tractable

distribution Q such that we can maximize the lower bound

L(Q), the true posterior P (z,Θ|x,y) can be efficiently

approximated by distribution Q. To do this, we use the

factorized distribution,

Q(z,Θ)=Q(z)Q(Wx)Q(Wy)Q(αx)Q(αy)Q(Σx)Q(Σy).
(21)

By maximizing the lower bound L(Q), distribution Q can

be derived as follows:

Q(z) = Cz exp 〈lnP (x,y, z,Θ)〉
Q(Θ) , (22)

Q(Θi) = CΘi
exp 〈lnP (x,y, z,Θ)〉

Q(z)Q(Θk �=i) ,(23)

where Cz and CΘi
are normalization constants. The brackets

< · >Q represent the expectation with respect to distribution

Q. By considering (4)-(23), we find the factorized distribu-

tion Q as follows:

Q(z) = N (z|µ
z
,Σz), (24)

Q(wj
x
) = N (wj

x
|µj

wx
,Σj

wx
), j = 1 . . . dx, (25)

Q(wj
y
) = N (wj

y
|µj

wy
,Σj

wy
), j = 1 . . . dy, (26)

Q(αi
x
) = Γ(αi

x
|ax, b

i
x
), i = 1 . . .m, (27)

Q(αi
y
) = Γ(αi

y
|ay, b

i
y
), i = 1 . . .m, (28)

Q(Σx) = W(Σx|Kx, νx), (29)

Q(Σy) = W(Σy|Ky, νy). (30)

Then, the update rules for each parameter of the factorized

distribution are given as:

Σz=
(

I+
〈

WT
x
ΣxWx

〉

+
〈

WT
y
ΣyWy

〉)−1
, (31)

µk
z
=Σz

[

xT
k 〈Σx〉 〈Wx〉+ yT

k 〈Σy〉 〈Wy〉
]T

, (32)

k=1, . . . , N, where N denotes the number of samples,

νx=νx +N, (33)

νy=νy +N, (34)

Kx=K0
x
+

〈

N
∑

k=1

(xk −Wzk)(xk −Wzk)
T

〉

, (35)

Ky=K0
y
+

〈

N
∑

k=1

(yk −Wzk)(yk −Wzk)
T

〉

, (36)

Σj
wx

=

[

diag < αx > +

N
∑

k=1

(〈

zkz
T
k

〉〈

Σj,j
x

〉)

]−1

, (37)
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Fig. 4. Illustrative example: (left) standard CCA, (right) variational CCA.
In the right figure, sparse projection matrix can be observed.

Σj
wy

=

[

diag < αy > +

N
∑

k=1

(〈

zkz
T
k

〉〈

Σj,j
y

〉)

]−1

, (38)

µj
wx

=Σwx

N
∑

k=1



xT
k

〈

Σj
x

〉

〈zk〉
T−
〈

zkz
T
k

〉

dx
∑

l �=j

〈

wl
x

〉T
〈

Σl,j
x

〉





T

, (39)

µj
wy

=Σwy

N
∑

k=1



yT
k

〈

Σj
y

〉

〈zk〉
T−
〈

zkz
T
k

〉

dy
∑

l �=j

〈

wl
y

〉T
〈

Σl,j
y

〉





T

,(40)

ax=a0 +
dx

2
, (41)

ay=a0 +
dy

2
, (42)

bi
x
=b0i +

〈

||Wi
x
||2

〉

2
, (43)

bi
y
=b0i +

〈

||Wi
y
||2

〉

2
, (44)

where Σj,j denotes the j-th diagonal element of matrix Σ,

Σl,j denotes (l, j) element of matrix Σ, Σj denotes the j-th

column vector of matrix Σ and W i denotes the i-th column

vector of matrix W.

C. Illustrative example

In this section we present an illustrative example of how

CCA and variational CCA work. We consider two observa-

tion vectors x ∈ R8 and y ∈ R10, which are assumed to be

generated from latent vector z ∈ R3.

We randomly generated the latent vector z from the normal

distribution in (6). Σx and Σy in (7) and (8), respectively,

are unit covariance matrix. Each element of the projection

matrices Wx and Wy is also generated from the normal

distribution N (0, 1).
By simply using CCA, we estimate the projection matrices

Wx and Wy as shown in Fig. 4 (left). On the other hand,

using variational CCA and as a result of ARD, we can find

the sparse projection matrices as shown in Fig. 4 (right).

III. JOINT ANGLE PREDICTION USING EMG

So far we have focused on the problem of finding the

latent kinematic relationship between the human user and

the assistive robot. In this section, we consider the control

problem that uses the derived kinematic relationship.

Fig. 5. Simplified simulation models for (left) an exoskeleton robot and
(right) a human user. The exoskeleton robot model is composed of three
links with one slider joint (le) and two revolve (rotational) joints (θe

1
, θe

2
).

The human user model is composed of four links with three revolve joints
(θs

1
, θs

2
, θs

3
).

As introduced in the previous section, we can find the

state of the assistive robot that corresponds to the state of

the human user through the derived shared state space. Thus,

we can use the corresponding state of the assistive robot as

the desired joint angles and angular velocities to control the

robot using a proportional-derivative (PD) controller.

Generally, we need to use higher gains to achieve smaller

tracking errors. However, it is not preferable to use very high

gains for the PD controller since a human must wear the

assistive robot. To reduce the tracking errors without using

very high gain feedback, we can use predicted desired joint

angles θ and angular velocities θ̇ as the feedforward control

signal. Moreover, the predicted desired joint trajectory is

necessary to assist human behaviors since the robot can start

moving a bit earlier than initiation of a human behavior.

To generate the predicted desired joint angles and angular

velocities, we use the EMG signals of human users [15],

[16]. In this study, we use a linear prediction model:

x(k + 1) = Ax(k) +Bu(k), (45)

where x =
(

θ, θ̇
)

and u = (EMG1, EMG2, ..., EMGn).

Parameters A and B can be derived from the simultaneously

measured joint angles θ, angular velocities θ̇, and EMG data.

Using the linear model is a popular approach for movement

reconstruction (e.g., [17], [18]), and we also empirically

find that the linear model is sufficient to reconstruct the

movements considered in this study.

IV. SIMULATION

Here, we consider an assistive robot model, depicted in

Fig. 5(left) and, a simplified human user model, depicted in

Fig. 5(right). As shown in Fig. 5, these two models have

different kinematic properties. The assistive robot model is

composed of three links with one slider joint (l e) and two

revolve (rotational) joints (θe1, θ
e
2). The human user model is

composed of four links with three revolve joints (θ s
1, θ

s
2, θ

s
3).
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In this simulation, we attempt to find the latent kinematic

relationship between the human user and assistive robot

models using variational CCA.

We assume that the user’s feet are attached to the feet

of the assistive robot and that the user takes the saddle. In

other words, foot and hip positions are the same for the

two models. We consider the sinusoidal movements of the

horizontal hip position as shown in Fig. 6.

As depicted in Fig. 5, the state of the assistive robot is y =
(le, θe2, θ

e
3) and that of the human user is x = (θs1, θ

s
2, θ

s
3).

In this simulation study, we purely focus on the kinematic

relationship and only consider joint angles.

Figure 7 shows the trajectories of the states of the human

user and the robot as the hip position moves horizontally.
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Fig. 6. (left) Horizontal and (right) vertical trajectories of hip positions
for training data and test data.
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Fig. 7. Joint trajectories of (left) exoskeleton and (right) human user
models.

We extract the latent kinematic relationship through find-

ing the shared state space using variational CCA. In this

simulation, by using the ARD property of variational CCA,

we found a two-dimensional latent space with fewer dimen-

sions than the state space of the human user or that of the

assistive robot. Moreover, the variational CCA captures the

number of dimension of the operational 2-D space only from

the acquired data.

In the variational CCA model, we derive distributions of

weight matrices Wx and Wy, for generating the user state

x and the robot state y, respectively, from the latent state z.

Here we consider using mean matrices of the distirubutions

W̄x and W̄y, where W̄ =
[

µ1,µ2, . . . ,µd
]T

. The row

vectors of the mean matrices are derived in (39) and (40).

Simultaneously, we can derive the pseudo inverse of the

mean weight matrix W̄+
x

. Thus, we can derive the state of

the assistive robot model y from the human user state x as

y = W̄yW̄
+
x
x. (46)

In Fig. 8, we compare the estimated trajectory of the

robot model using (46) with the actual trajectory that can

be derived analytically from knowledge of the parameters

of kinematics models. The plots in Fig. 8 show that the

estimated trajectories are almost same as the actual. This

results indicate that the latent kinematic relationship is cor-

rectly estimated.
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Fig. 8. Reconstructed joint trajectories (le, θe
1
, θe

2
). Estimated trajectories

are almost same as actual.

V. FINDING SHARED STATE SPACE USING EXOSKELETON

ROBOT

In this section, we consider using our newly developed

exoskeleton assistive robot XoR. XoR is designed to assist

lower-limb movements of humans. XoR has ten degrees of

freedom and six active joints. Each active joint use a hybrid

actuator composed of air muscle and electric motor. By using

the hybrid actuator, we can develop a light weight robot with

high power actuation [12], [19], [20].

A. Finding shared state space

First, a human subject rides on the assistive robot and

generates squat movements. We measure the joint angles

and angular velocities of the human subject and the assis-

tive robot simultaneously using encoders on the robot and

goniometers attached to the human subject.

The state of the human subject x = (θs1, θ
s
2, θ

s
3) is the same

as that depicted in Fig. 5(right). The state of the assistive

robot XoR y = (θe1, θ
e
2, θ

e
3) is illustrated in Fig. 9. Note that

this kinematics model is different from the model presented

in Fig. 5(left. Figure 10 shows the squat movement of the

exoskeleton robot XoR. Having found the shared state space

between the human subject and the assistive robot, we derive

the corresponding state of the assistive robot to the human

subject state using (46).

B. Predicting state of human subject using EMG signals

As discussed in Section III, we predict the future state

of the human subject using EMG signals. We measured

Fig. 9. Simulation model of our newly developed exoskeleton robot XoR.
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Fig. 10. Simultaneous acquisition of joint angle data for the exoskeleton robot XoR and the human user.

Fig. 11. Generated squat movement of the exoskeleton robot model.
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Fig. 12. EMG signals. Each plot, from top to bottom, shows EMG signal
of Quadriceps femoris, Tensor fasciae latate, Gluteus medius, and Tibialis
anterior, respectively.

activity in four muscles (Quadriceps femoris, Tensor fasciae

latate, Gluteus medius, and Tibialis anterior) (see Fig. 12) to

predict the joint angles and angular velocities as in (45). The

measured EMG signals were rectified and low-pass filtered

with 10 Hz cut-off. The input to the linear system in (45)

is u = (EMG1, EMG2, EMG3, EMG4). The predicted

state is used as the desired input to the PD controller:

τi = Kp(θ
d
i − θsi ) +Kd(θ̇

d
i − θ̇si ), (47)

where τi is the torque output and θdi is the predicted state

for the i-th joint. Kp = 1000 and Kd = 100 are the servo

gains.

C. Application to simulated exoskeleton robot model

To evaluate the proposed approach, we applied this control

scheme to the simulated XoR model. We used a dynamical

model for the assistive robot.

In Fig. 13, we evaluated the tracking errors between the

actual movement of the robot and the simulated movement of

the robot model. The mean-squared error, when applying the

predicted desired state generated by EMG, was 1.8×10−3. If

we simply used the current joint angles and angular velocities

of the human subject, the mean-squared error was 2.1. These

results show the benefit of using the predicted desired states

of human users to control assistive robots.
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Fig. 13. Comparison of tracking errors at hip joints: (left) with EMG,
(right) without EMG.

VI. CONCLUSIONS

In this study, we extracted the latent kinematic rela-

tionships between human users and assistive robots. Using

the extracted relationship, we can efficiently transfer the

movement intention of a human user to the assistive robot

through the derived kinematic relationship.

We evaluated the proposed approach in a simulated envi-

ronment. We also found the kinematic relationship between a

human subject and the newly developed exoskeleton assistive

robot XoR. The measured EMG and the extracted kinematic

relationship were used to control the simulated XoR model.

Then, we showed that we were able to control the XoR

model by using the latent kinematic relationship and the

EMG signal. We used the simple linear model to predict

joint angles and angular velocities from EMG data. To cope
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with wider variety of movements, we may need to use a

nonlinear model [21]. We empirically figured out that the

selected four muscles were useful for the prediction. As a

next step, we will consider to develop an automatic muscle

selection method.

As future studies, we combine the proposed framework

with the pattern-generator-based biped locomotion con-

troller [22] to support biped walking movements.
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