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a b s t r a c t

In this study, we propose an extension of the MOSAIC architecture to control real humanoid robots.
MOSAIC was originally proposed by neuroscientists to understand the human ability of adaptive control.
The modular architecture of the MOSAIC model can be useful for solving nonlinear and non-stationary
control problems. Both humans and humanoid robots have nonlinear body dynamics and many degrees
of freedom. Since they can interact with environments (e.g., carrying objects), control strategies need to
deal with non-stationary dynamics. Therefore, MOSAIC has strong potential as a human motor-control
model and a control framework for humanoid robots. Yet application of the MOSAIC model has been
limited to simple simulated dynamics since it is susceptive to observation noise and also cannot be applied
to partially observable systems. Our approach introduces state estimators into MOSAIC architecture to
cope with real environments. By using an extended MOSAIC model, we are able to successfully generate
squatting and object-carrying behaviors on a real humanoid robot.

© 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Previous studies have suggested that the human central
nervous system acquires and switches internal models of outside
environments to adaptively perform motor control of the body
in various environments (Imamizu, Kuroda, Yoshioka, & Kawato,
2004; Imamizu et al., 2007). Modular selection and identification
for control (MOSAIC) architecture composed of multiple linear
state predictors and controllers was originally proposed in
order to explain the motor-control strategy of the human
brain (Haruno, Wolpert, & Kawato, 2001; Wolpert & Kawato,
1998). Humans and humanoid robots both have nonlinear body
dynamics and many degrees of freedom (DOF). Moreover, they
both interact with objects in real environments, which naturally
requires nonlinear and non-stationary control strategies. MOSAIC
architecture has strong potential as a humanmotor-control model
and a control framework for humanoid robots, and its flexible
structure enables the robot to control the nonlinear and non-
stationary environment. But application of the MOSAIC model
has been limited to simple simulated dynamics, which can be
partially attributed to two problems: (1) the MOSAIC model does
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not explicitly consider the existence of noise input to sensory
systems and (2) it assumes full observation and thus cannot deal
with partially observable systems. In this study, we propose an
extension of the MOSAIC architecture to cope with observation
noise and partially observable systems. Each module of MOSAIC
has a forward model, and we can adopt these to construct a
state estimator. Moreover, using state estimators can provide a
reasonable model of the sensorimotor function of the central
nervous system, as previously suggested in Wolpert, Ghahramani,
and Jordan (1995). A state estimation strategy using switching
linear models is also considered to be a useful approach for
estimating hidden variables of complicated nonlinear dynamics
(Ghahramani & Hinton, 2000). Our new method, called extended
MOSAIC with state estimators (eMOSAIC), can deal with large
observation noise and partially observable systems. Based on these
advantages the proposed control framework can be applied to real
systems such as humanoid robots.

A popular approach to controlling nonlinear dynamics is using
the inverse dynamics model and canceling the nonlinear terms.
Then, linear error dynamics are introduced to reduce the tracking
error. This approach is called feedback linearization (FL; Slotine &
Li, 1991). FL performs well if the given inverse dynamics model is
accurate. However, it is well known that estimating the inverse
model of the real system is difficult due to the existence of
friction. The controller of the proposed method can be derived
as a linear optimal controller, for which it is well known that
the sensitivity for the modeling error is low. Thus, the proposed
method ismore robust against themodeling error than FL. Another
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popular nonlinear control method is gain scheduling (GS) control
(Rugh, 1991; Rugh & Shamma, 2000); The GS considers nonlinear
dynamics as a linear parameter varying (LPV) system (Shamma &
Athans, 1992) defined around a pre-determined state. Although an
analysis of robustness is well studied (Chesi, 2010; Lim & How,
1998), a design of the scheduling parameter requires a knowledge
of structure of task and plant, thus it is difficult to apply the GS to
a complex environment such as a humanoid robot. On the other
hand, in our proposed method appropriate models can be selected
according to prediction accuracy of each linear state predictor.

Adaptive control (Astrom & Wittenmark, 1989) is a standard
method for controlling a non-stationary system. In this method,
controller parameters are adaptively modified according to the
tracking error. Since this method assumes that the environment
change is gradual, it cannot cope with a sudden change of
dynamics; e.g., carrying or grabbing extra weight. To control
such an environment, the switching control method seems to be
suitable (Morse, 1996). In the proposedmethod, again, the module
can be switched according to prediction accuracy of each linear
state predictor.

In Section 2, we introduce eMOSAIC. In this study, we adopt an
optimal control approach in the MOSAIC model (as proposed in
Doya, Samejima, Katagiri, and Kawato (2002)).

In Sections 3 and 4, we evaluate the control performance of
the eMOSAICmodel in environments with large observation noise,
partially observable setup, andmodeling errors.We investigate (1)
nonlinear control performance through a squatting task (Grimes,
Chalodhorn, & Rao, 2006; Nakaoka, Nakazawa, & Ikeuchi, 2004)
using either a two-link robot model or the humanoid robot, and
(2) non-stationary control performance through a object-carrying
task using either a single-pendulum robot model or the humanoid
robot with a weight. We also show that eMOSAIC significantly
outperforms the original MOSAIC in these tasks. In Section 3, we
consider the squatting task by using the two-link robot model and
the lifting task by using the single-pendulum robot model in a
simulated environment. In Section 4, we apply eMOSAIC to control
our humanoid robot CB-i (Fig. 1) to demonstrate that the proposed
model can be used in a real environment. The results show that
a humanoid robot can maintain its balance while performing the
squatting and object-carrying tasks using the eMOSAIC model.

2. The eMOSAIC model

In this section, we introduce the eMOSAIC model to control a
highly nonlinear system, such as our CB-i humanoid robot (see
Fig. 1), in a non-stationary environment.

2.1. Optimal control problem of nonlinear and non-stationary dy-
namics

We consider an optimal control problem of nonlinear and non-
stationary dynamics, where the dynamics are represented as:

x(t + 1) = f(x(t),u(t), t) + n(t), (1)
y(t) = h(x(t), t) + v(t), (2)

where x ∈ ℜ
N ,u ∈ ℜ

D, and y ∈ ℜ
L are state, action and

observation vectors, respectively, andn(t) ∼ N (0, Σx) and v(t) ∼

N (0, Σy) are system and observation noises. N (0, Σ) denotes a
Gaussian distribution with zero mean and covariance Σ .

In an optimal control framework, the learning system tries to
find the optimal controller to minimize the objective function:

J = E


∞
s=0

r(x(s),u(s))


, (3)
Fig. 1. Humanoid robot CB-i. Height: 1.6 m. Weight: 90 kg. Robot has 51 degrees
of freedom.

where r(x,u) is the cost function. To find the optimal controller for
minimizing the objective function, we estimate the value function:

V (x(t)) = E


∞
s=t

r(x(s),u(s))


. (4)

2.2. The eMOSAIC model

The eMOSAIC model has a modular architecture. Each module
is composed of a state estimator, responsibility predictor, value
function estimator, and controller. We approximate nonlinear
and non-stationary dynamics by switching linear models and a
nonlinear cost function by switching quadratic models:

x(t + 1) = Aix(t) + Biu(t) + ci + n(t), (5)
y(t) = Hix(t) + v(t), (6)

ri(x(t),u(t)) =
1
2
x(t)TQix(t) +

1
2
u(t)TRiu(t), (7)

where Ai ∈ ℜ
N×N and Bi ∈ ℜ

N×D are regression parameter of the
ith linear dynamics, ci ∈ ℜ

N is bias parameter, and Hi ∈ ℜ
L×N is

an observation matrix. Qi ∈ ℜ
N×N and Ri ∈ ℜ

D×D are parameters
of the ith quadratic cost function. Therefore, each state estimator
and controller can be represented by a linear model, and the value
function estimator can be represented by a quadratic model.

Fig. 2 shows a schematic diagram of the eMOSAIC model. The
responsibility predictor derives the responsibility of each module
based on the state-prediction accuracy of the state estimator.
Final output from the learning system is then derived as the
weighted sum of eachmodule’s output by the responsibility signal.
Below, we explain the details of (I) learning forward models,
(II) state estimator, (III) responsibility predictor, (IV) value function
estimator, and (V) controller.
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Fig. 2. extended MOSAIC with state estimators (eMOSAIC).
2.2.1. (I) Learning forward models
The objective of learning in each linear dynamics model is

to minimize the weighted prediction error. If each model is
represented in a linear form xi(t + 1) = Wiz(t),1 the expected
values for the regression parametersWi can be derived as

Wi =
⟨xz⟩i(T )

⟨zzT⟩i(T )
. (8)

The notation ⟨g⟩i(T ) annotates a weighted mean of a function g
with respect to the responsibility signal λi(t):

⟨g⟩i(T ) =
1
T

T
t=1

g(t)λi(t). (9)

The responsibility signal is a probability distribution of themodule
selection (described in Section 2.2.3). By iterating the responsibility
signal calculation and parameter update, the likelihood will
increase to the suboptimal.

2.2.2. (II) State estimators
The state estimator estimates the latent states of the dynamics

from an observation. We use a linear state estimator:

x̂i(t + 1|t) = Aix̂i(t) + Biu(t) + ci, (10)

x̂i(t + 1) = x̂i(t + 1|t) + Ki(y(t) − Hix̂i(t + 1|t)) (11)

where x̂i is the estimated state and Ki is the parameter of the
state estimator. We derive the parameter Ki by solving the linear
optimal estimation problem (Kalman & Bucy, 1961; Lewis, 1986)
(see Appendix A).

2.2.3. (III) Responsibility predictors
The contribution of each module is represented by probability

distribution λi, which we call the ‘‘responsibility signal’’. The
responsibility signal λi is given by the following Bayes’ rule:

λi(t) =
P(i)p(x(t) | y(1 : t), i)

i′∈M
P(i′)p(x(t) | y(1 : t), i′)

, (12)

where M is the set of module indices, p(x(t) | y(1 : t), i) is the
likelihood of the ith module, and P(i) is the prior. By assuming
that the prediction error and estimation error are Gaussian with

1 Wi and z represent [Ai Bi ci] and [xT uT 1]T .
covariances Σx and Σy, the likelihood of the ith module p(x(t) |

y(1 : t), i) is given by

p(x(t) | y(t), i) ∝ p(y(t) | x(t|t − 1), i)p(x(t|t − 1), i), (13)
p(y(t) | x(t|t − 1), i)

=
1

(2π)L|Σy|
exp


−

1
2
ei(t)TΣ−1

y ei(t)


, (14)

ei(t) = y(t) − Hixi(t|t − 1), (15)

p(x(t|t − 1), i) = p(xi(t|t − 1) | xi(t − 1),u(t − 1))

=
1

(2π)N |Σx|
exp


−

1
2
di(t)TΣ−1

x di(t)


, (16)

di(t) = xi(t) − {Aixi(t − 1) + Biu(t − 1) + ci} , (17)

where x̂i(t|t −1) is the predicted state of the state estimator of the
ith module and ei(t) = y(t) − Hix̂i(t|t − 1) is the so-called error
of innovation.

Finally, the estimated state is derived by the weighted sum of
each module:

x̂(t) =


i∈M

λi(t)x̂i(t), (18)

where x̂i(t) is the estimated state of the ith module at time t .

2.2.4. (IV) Value function estimators
We derive the controller by locally solving the linear-quadratic

optimal control problem. Since we approximate nonlinear and
non-stationary dynamics by multiple linear models in Eq. (5) and
the cost function by the quadratic functions in Eq. (7), we can
locally estimate the value function by using a quadratic function:

Vi(x(t)) =
1
2
(x̂(t) − xv

i )
TPi(x̂(t) − xv

i ), (19)

where the matrix Pi is given by solving the Riccati equation:

0 = PiAi + AT
i Pi − PiBiR−1

i BT
i Pi + Qi. (20)

The center xv
i of the ith value function is given by

xv
i = −(Qi + PiAi)

−1Pici. (21)

2.2.5. (V) Controllers
By using the estimated value function in Eq. (19), we can derive

linear optimal controller for the ith module as (Doya, 2000; Lewis,
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Fig. 3. (a) Two-link robot model. The mass and length of each link are 5 kg and 0.5 m, respectively, and the friction coefficient of each joint is 0.1. (b) Relationship between
the phase of the periodic pattern generator φ and the posture of the two-link robot model. For details, see Appendix D. (c) Single pendulummodel with payload. The masses
of weights attaches at the corner and tip are 10 kg and 5 kg, and the lengths of long and short axes are 1.5 m and 0.5 m, respectively.
1986) as:

ui(t) = −RiBT
i Pi(x̂(t) − xv

i ). (22)

The final output of the controller is derived by the weighted sum
of each module output:

u(t) =


i∈M

λi(t)ui(t). (23)

3. Simulations

We evaluated the proposed method by using a simple robot
model (see Fig. 3(a) and (c)). The squatting and lifting tasks
evaluate the nonlinear and non-stationary control performance,
respectively.

3.1. Squatting task

3.1.1. Simulation setup
A basic squatting behavior is provided by a periodic pattern

generator. Fig. 3(b) shows the relationship between the phase of
the periodic pattern generator (φ) and the posture of the two-
link robot model (see Appendix D). The pattern generator outputs
a simple sinusoidal trajectory to a proportional derivative (PD)
controller of the robot. The frequency of the squatting movement
is 0.2 Hz. Since a robot flexes and extends its legs periodically,
a complex control law is required to prevent it from falling. We
apply eMOSAIC to control the two-link robot model so that it can
maintain its balance during the squatting. Note that the two-link
robot model cannot maintain its balance by only using the output
of the periodic pattern generator.

The angle of the lower link and the center of mass (CoM) are
represented by θ1 and θ2 (see Fig. 3(a)). The input state vector
is x = [θ1 θ2 θ̇1 θ̇2]

T. The output of eMOSAIC is a relative
desired trajectory of the root joint. The sum of the relative desired
trajectory and the output of the periodic pattern generator is used
to derive torque at each joint based on a PD controller. The torque
commands for the actuator are generated by the PD controller
which is given by

τ = −K(q − qd), (24)

where q = [qroot qmiddle q̇root q̇middle]
T represents the position

and velocity of the joint angles, qd is the desired trajectory, τ =

[τroot τmiddle]
T is a torque command for the actuator of the robot,

and K =


50 0 10 0
0 50 0 10


is a gain matrix of the PD controller.

The cost is given in the quadratic form (Eq. (7)). The parameters
of the quadratic cost are Qi = diag{0, 1, 0, 1} and Ri = 0.1 for all
modules. One trial lasted 10 s. The simulation and observation time
step was 0.002 s.

We evaluated the prediction error, the control cost, and the
computation time without the observation and system noise in
order to select a number of modules. Each module segmented
the squatting movement at regular phase intervals of the pattern
generator from φ = 0 (standing position) to φ = π (crouching
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a b c

Fig. 4. Evaluation result of (a) average prediction error, (b) average cost, and (c) computation time for different number of modules, respectively.
a b c

Fig. 5. Results of squatting task. (a) Average costs with different observation noise. The means and standard deviations over 100 simulation runs are plotted. (i) The dotted
line indicates the result of original MOSAIC. (ii) The dashed line indicates the results of eMOSAIC without using responsibility predictor. (iii) The solid line indicates the
results of the proposed method. (b) The trajectory of CoM (θ2). The dotted and solid lines indicate the original MOSAIC and eMOSAIC. (c) The responsibility signal of the
proposed method (iii) is shown. Panel A indicates the phase of the periodic pattern generator, and panels B–D indicate the responsibility signals of the three modules. The
low-passed signals are plotted with a cutoff frequency of 10 Hz.
position). For example, in the case of three modules (M = 3), each
forward model predicts the dynamics around φ = 0, 1

2π, π . Then,
for each module, we sampled trajectory around the corresponding
posture by using random Gaussian noise as a control input and
estimated the parameters of forward model (see Eq. (8)). Fig. 4
shows the relationships between the number of modules and
average prediction error, average control cost, and computation
time for one trial. The prediction error and the control cost
decreased drastically from M = 1 to M = 3 while significant
differences between these values withM = 3 and these withM =

6were not observed. On the other hand, computation time linearly
increased when the number of modules increased. Therefore,
we decided to use three modules for this task. The acquired
parameters of the linear models are presented in Appendix B.

In this simulated environment, we focused on showing three
advantages of the eMOSAIC model: (1) it can be applied to an
environment with large observation noise (see Section 3.1.2), (2) it
can be applied to a partially observable system (see Section 3.1.3),
and (3) it can cope with modeling errors (see Section 3.1.4).

3.1.2. Robustness against large observation noises
First we evaluated the robustness of eMOSAIC against large

observation noises. For this comparison, we considered two
methods: original MOSAIC and eMOSAIC.

We tested the control performance of two methods with
observation noises: Σy = σ 2

obsI where σ 2
obs = 0–0.12. Fig. 5(a)
shows the relationship between the size of the observation noise
and the average cost in the squatting task. The mean and standard
deviation of the cost over 100 simulation runs are plotted. Dotted
and solid lines represent results acquired by the two methods,
original MOSAIC and eMOSAIC, respectively. The average cost of
the original MOSAIC rapidly increased based on according to the
size of the observation noise. In contrast, the average cost of
eMOSAIC was relatively insensitive to the size of the observation
noise. These results indicate that eMOSAIC is robust against
observation noise.

Next, we evaluated the effect of the prior information for the
module selection. If the linear modules are sparsely allocated, the
responsibility signal tends to chatter around a border of the local
state spaces specified by the linear models, due to the softmax
calculation of Eq. (12). Chattering of the responsibility signals
causes damage to the hardware in the real environment. In order
to avoid the hardware damage, the temporal continuity, which
assumes that themodules switch smoothly, as prior information of
module selection can be introduces. We describe the details of the
temporal continuity in Appendix C. The natural frequency of the
pendulum represented by CoM at the standing position (φ = 0) is
0.705 Hz. We empirically found that the time constant parameter
of the temporal continuity ρ around 10–20 times of the natural
frequency leads good control performance. In this simulation, we
selected the time constant parameter of the temporal continuity
as a 15 times of the natural frequency (ρ =

1
15×0.705 ). Dashed
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Fig. 6. Results of squatting task in full observation and partial observation environments. (a) Trajectory of CoM (θ2). The solid and dashed lines represent full and partial
observation cases, respectively. (b), (c) Squatting movements of full and partial observation cases (seeMovie 1).
line represents the performance of eMOSAIC with the temporal
continuity as the prior information. The performance was slightly
better than the case of without the temporal continuity. This result
indicates that introduction of the temporal continuity dose not
significantly deteriorate control performance. Note that we use
P(i) = 1/M whereM = 3 as prior information for the casewithout
using the temporal continuity.

Fig. 5(b) plots the trajectory of θ2 (CoM angle) with the
observation noise with variance σ 2

obs = 0.022. The dotted and solid
lines represent control performance of the originalMOSAIC and the
eMOSAIC, respectively. eMOSAIC showed better performance in
maintaining balance than the originalMOSAIC. Fig. 5(c)-A show the
phase of the periodic pattern generator (φ), and Fig. 5(c)-B–D show
the responsibility signal of each module (i = 1, 2, 3) estimated by
eMOSAIC. eMOSAIC was able to switch each module periodically
for the periodic squat movement.

Through this simulation we demonstrated that the robot
model could maintain balance and switch the modules in the
noisy environment using eMOSAIC. These results indicate that
the adaptation capability of the MOSAIC architecture can be
implemented in a real environment.

3.1.3. Application to partially observable environments
In the real environment, there is no guarantee that all states can

be measured. Here, we apply eMOSAIC to both a fully observable
and partially observable system (only joint angles can be observed,
i.e., Hi =


1 0 0 0
0 1 0 0


in Eq. (6)).

Fig. 6(a) plots the trajectories of CoM (θ2) in the fully observable
and partially observable system. In the case of full observation, the
angle of CoM could be maintained around zero. Table 1 shows the
mean squared errors, and Fig. 6(b) and (c) show the sequence of the
squatting movements for full observation and partial observation.
In the both cases, eMOSAIC was able tomaintain the balance of the
two-link robot (see Movie 1). In the partially observable system,
however, the CoM angle deviated from zero, and the robot could
avoid failure even if the angular velocities of each joint could not
be observed.

Note that the two-link robot model cannot maintain its balance
by only using the output of the periodic pattern generator.
Table 1
Mean squared errors of squatting task in fully observable and
partially observable system.

Full observation Partial observation

MSE 3.66 × 10−6 4.18 × 10−4

3.1.4. Robustness against modeling errors
For the real system it is difficult to precisely estimate

physical parameters. Here, we evaluate the proposed method’s
robustness against modeling errors and compare the robustness
of the controller with that of a standard nonlinear tracking
controller using feedback linearization (FL) (Slotine & Li, 1991) (see
Appendix E).

FL cannot balance the CoM of the robot with the desired
trajectory used by eMOSAIC since that was a simple sinusoidal
trajectory (see Fig. 3(b)). Therefore we modified the desired
trajectory of FL (qdes) to maintain the angle of CoM (θ2) zero
precisely. (For details of the modified desired trajectory, see
Appendix D.) We optimized the parameter κ that represents the
convergence property of the tracking error in order to minimize
the tracking error: κ = 5.88 (see also Appendix D).

To simulate the modeling errors, we multiplied the parameter
α to actual mass and length of the robot links. Thus α = 1
means a zero modeling error. We evaluated the robustness of both
methods against the modeling errors (α = 0.6–2). The variance of
the system and the observation noises ware fixed to small values,
σ 2
sys = 0.0012 and σ 2

obs = 0.012. The results are plotted in Fig. 7,
in which the horizontal and vertical axes are the parameter α
and the mean of the CoM angle (θ2). The eMOSAIC shows better
tracking performance than FL except for the case ofα ≠ 1 inwhich
there is no modeling error. In the implementation of eMOSAIC we
derived the controller of eachmodule as an optimal linear feedback
controller. It is well known that the optimal linear feedback control
law reduces the sensibility for the modeling error (Cruz & Perkins,
1964; Fujii & Narazaki, 1984; Perkins & Cruz, 1971). The tracking
error of FL was significantly large when the parameter α was less
than one. This is because FL output the smaller than required
torque, and then failed to maintain the balance.
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Fig. 7. Results of robustness test of eMOSAIC and feedback linearization. The
horizontal axis is the parameter α defining a modeling error. The vertical axis is
the angle of CoM (θ2). The mean and standard deviation of 50 trials are plotted.

3.2. Lifting task

3.2.1. Simulation setup
Here, we consider the lifting task as an example of a non-

stationary control problem. Fig. 3(c) shows single-pendulum
models with and without payload. For the pendulum model with
the payload, theweights attached at the corner and tip represented
the mass of the robot’s body and the payload. The task was to
keep the balance in response to the existence and absence of the
payload.

One trial was 6 s and the payload was attached during the last
3 s. The state vector is x = [θ θ̇ ]

T, and the output is the desired
trajectory of the joint. The torque command for the actuator is
generated by the PD controller given by

τ = −K(x − xdes), (25)

where xdes is the desired trajectory, τ is a torque command for
the actuator, and K = [50 10] is the gain parameters of the PD
controller.

The cost is given by a quadratic formation:

r(t) =
1
2
x(t)TQx(t) +

1
2
u(t)TRu(t), (26)

where Q = diag{1, 1} and R = 0.1. Thus the minimum cost was
given at upright position θ = 0 rad.

Since there are two conditions: with and without payload,
we use two modules (i = 1, 2). The first and second modules
predict a single-pendulum model without and with the payload,
respectively. We sampled data around a standing position by
using Gaussian random input absence and presence of the payload
for the first and second modules respectively and estimated
the parameters of forward model (see also Eq. (8)). Obtained
parameters are showed in Appendix B. We again test the
performance of the two control methods: original MOSAIC and
eMOSAIC. We evaluate the robustness of two methods with
observation noises (Σy = σ 2

obsI with σ 2
obs = 0–0.012).

3.2.2. Results
Fig. 8(a) shows the relationship between the observation noise

and the average cost in the lifting task. Dotted and solid lines
represent the performance of original MOSAIC and eMOSAIC. The
proposed method shows the higher performance than the original
MOSAIC. The performances of the original MOSAIC decreased
drastically with large observation noise while eMOSAIC did not.
We again evaluated the effects of the temporal continuity.
Dashed line in Fig. 8(a) represents the performance of eMOSAIC
with the temporal continuity. The natural frequency of single-
pendulum without payload is 0.407 Hz, we also selected the time
constant parameter ρ as 15 times of the natural frequency (ρ =

1
15×0.407 ). The performance was better than the case of without
the temporal continuity. This result indicates that our proposed
method can switch module fast enough even with the temporal
continuity with the selected time constant parameter.

Fig. 8(b) and (c) represent the responsibility signals of original
MOSAIC and eMOSAIC. Original MOSAIC was not able to switch
the module according to the payload placement due to the large
observation noise. These results indicate that the state estimator
for the responsibility predictor is essential for coping with noisy
non-stationary environments.

4. Real robot experiments

Both for the squatting task and lifting task, we implemented
eMOSAIC for the CB-i real robot (see Fig. 1).

4.1. Squatting task

4.1.1. Experimental setup
We sought to maintain the balance of the CB-i in the squatting

task. Fig. 9(a) shows the pitch-joint coordination of the CB-i. A
periodic pattern generator output the desired trajectories to the
hip, knee, and ankle joints (see Appendix F).

We approximated the dynamics of CB-i using a two-link robot
with a foot model (Atkeson & Stephens, 2007; Hyon, Osu, &
Otaka, 2009; Stephens, 2007) (Fig. 9(b)). The input state is x =
θtorso θankle θgyro θ̇torso θ̇ankle θ̇gyro

T
. The outputs of eMOSAIC are

the relative desired torso and hip joint angles: u =

θ add
torso θ add

ankle

T.
These angles are added to the desired joint angles generated by the
periodic pattern generator. To follow the desired joint angles, the
torque output at each joint is derived by a PD controller:

τ = −K(q − qd), (27)

where q = [qtorso qhip qknee qankle q̇torso q̇hip q̇knee q̇ankle]T repre-
sents the joint angles’ position and velocity, qd is the desired tra-
jectory, τ = [τtorso τhip τknee τankle] is torque commands for the
robot’s actuators, and K is a gain matrix of the PD controller.

Here, the purpose of each linear optimal controller is to keep
the pitch angle of the gyro sensor close to zero θgyro = 0, where the
sensor is attached to the hip of CB-i (see Fig. 9(b)). The cost function
is defined by quadratic form (see Eq. (7)). The parameter for state
deviation is given as Qi = diag{0, 0, 1, 0, 0, 1} to minimize the
angle of the gyro (θgyro) and the angular velocity of the gyro
(θ̇gyro), and the parameter for output deviation is given as Ri =

diag{0.01, 0.01} (i = 1, 2, 3) to minimize the control cost.
We prepared three modules: i = 1, 2, 3, same as a simulation

of squatting task. The forward models of the first, second, and
third modules estimated states around three different postures.
We sampled data around the posture corresponding to the phase
of φ = 0, π

2 , π by using smoothed Gaussian random input and
estimated the parameters of forward models (see also Eq. (8)).

Since frequent module switching cause damage to the hard-
ware, we introduced temporal continuity of the responsibility
signal (see also Appendix C). The height of CoM of CB-i at a stand-
ing position is about 0.98 m, the natural frequency of the pendu-
lummodel represented by CoM and the center of pressure (CoP) is
0.504 Hz. By following the simulation results, we selected the time
constant parameter of the temporal continuity as a 15 times of the
natural frequency (ρ =

1
15×0.504 ).
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a b c

Fig. 8. Results of lifting task. (a) Average costs with different observation noise are displayed in the same format as in Fig. 5. Figs. (b) and (c) show the results obtained by
original MOSAIC and eMOSAIC. Each figure shows the responsibility signals of the module. The low-passed signals are plotted with a cutoff frequency of 10 Hz.
a b

c

Fig. 9. (a) Joint coordinates of humanoid robot CB-i. (b) Two-link robot with foot model of the CB-i. The two joints of the two-link model represent the torso and ankle joint
of the CB-i. The gyro sensor is attached to its hip. (c) Lifting task. Payload mass is 2.9 kg. Left: without payload. Right: with payload.
4.1.2. Results
Fig. 10 shows the results of the 0.5 Hz squatting task. Fig. 10(a)-

A shows the phase of the periodic pattern generator (φ). Fig. 10(a)-
B shows the trajectory of the pitch angle of the gyro sensor (θgyro).
The solid line represents the eMOSAIC result (see alsoMovie 2). The
pitch angle of the gyro sensor (θgyro) is maintained approximately
in the range of


−

2
180π, 2

180π

, within which the robot does not

fall over. The dashed line represents the result obtained by using
only the first module (see also Movie 3). At approximately t = 3 s,
the robot in which only the single module was used fell backward.
By using the multiple-module, we successfully balanced the robot
because the second and thirdmoduleswere subsequently selected.
Fig. 10(a)-C–E show the responsibility signals of three modules.
Fig. 10(b) shows the squatting movements by using multiple
modules. The upper body of the CB-i was stable even if the lower
body was flexed and extended. In contrast, in the case of a single
module (see Fig. 10(c)), the upper body moved backward and
forward. The robot could not standwithout support. The robot was
able to maintain the balance with squatting frequency up to 1.5 Hz
by using the eMOSAIC model (see alsoMovie 4).
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Fig. 10. Results of 0.5 Hz squatting task in real-robot experiments. (a) Panel A shows the phase of the periodic pattern generator (φ). Panel B shows the pitch angle of
the gyro sensor. The solid line represents the results of the proposed method (Movie 2), and the dashed line represents the results obtained by using only the first module
(Movie 3). The other panels C, E show the responsibility signals of the proposedmethod. (b), (c) Squatting movement of 0.5 Hz by using multiple modules and single module,
respectively. The robot was able to maintain balance during the squatting task with frequency up to 1.5 Hz (see alsoMovie 4).
4.2. Lifting task

4.2.1. Experimental setup
We tried to maintain the balance of the CB-i in the lifting task

(Fig. 9(c)). Again, we approximated the dynamics of our humanoid
robot by using the two-link robot with a foot model (Fig. 9(b)). We
used two modules (i = 1, 2) in eMOSAIC. The first and the second
models corresponded to the state of the CB-i absence and presence
of the payload, respectively. We again sampled data by using
smoothed Gaussian random input and estimated the parameters
of forward model (see also Eq. (8)). For the module selection, we
assumed the temporal continuity of the responsibility signal. We
selected the same time constant parameter to the squatting task
(ρ =

1
15×0.504 ).

In this task, each linear optimal controller tried to balance
the pitch angle of the gyro. Therefore, we used the quadratic
cost function the same as for the squatting task (Qi = diag{0,
0, 1, 0, 0, 1} and Ri = diag{0.01, 0.01}, i = 1, 2).

4.2.2. Results
Fig. 11(a) shows the results of the lifting task. Fig. 11(a)-A shows

the pitch angle of the gyro sensor. We applied a payload to the
tray at a time of t = 0 s. The solid and dashed lines represent the
proposedmethod (see alsoMovie 5) and the single-modulemethod
(see also Movie 6), respectively. The robot with a single module
fell forward at approximately t = 3 s. However, by the proposed
method, the pitch angle of the gyro sensor θgyro was successfully
maintained at less than 2

180π rad. Fig. 11(a)-B and C show the
responsibility signal of the modules for no-payload and payload,
respectively. First, the proposed method selected the first module,
which controls the environment without a payload. After applying
the payload, the second module, which controls the environment
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Fig. 11. Results of lifting task in real-robot experiments. (a)-A The pitch angle of the gyro sensor in themultiple-module and single-module cases (see alsoMovie 5 andMovie
6). B and C show the responsibility signals of the proposed method. (b), (c) The movement of the lifting payload by using multiple modules and single module, respectively.
The robot was able to maintain the balance with module switching even if the payload was applied, but it could not maintain balance without module switching.
when a payload is used, was automatically selected. Fig. 11(b) and
(c) show the sequence of the movements during the lifting task.
The robotwas able tomaintain balance evenwhen the payloadwas
applied, but could notmaintain balancewithoutmodule switching.

5. Conclusion

We have extended MOSAIC architecture by using state esti-
mators. We compared the proposed method with the previous
methods with large observation noise, partially observable envi-
ronment, andmodeling errors. The simulation results indicate that
our extended MOSAIC architecture improves robustness against
large observation noise and partial observation. We farther inves-
tigated robustness of our proposed method against modeling er-
rors by comparingwith the feedback linearizationmethod.We also
showed that we can roughly estimate proper number of modules
by checking the average prediction errors. The parameters of each
module can be estimated from generated data by using Gaussian
random input. We then implemented our proposedmethod on the
CB-i humanoid robot. We tried to stabilize the CB-i in a squatting
task and lifting task. In these tasks, the CB-i was not able to main-
tain balance by only using the singlemodule. Our proposedmethod
however successfully stabilized the robot.

The squatting task is suitable to evaluate the control perfor-
mance of nonlinear control methods. Grimes et al. (2006) pro-
posed a imitation leaning algorithm and evaluated the algorithm
on the squatting task. They transferred the captured human mo-
tion to the humanoid robot via a latent state space composed
of low-dimensional posture information, gyro sensor information,
and foot pressure information. However, this imitation learning
method can only be used to generate feed-forward squatting tra-
jectories. Therefore, the control performance can be susceptible to
external disturbances. On the other hand, our proposed method
consists ofmultiple linear feedback controllers. Thus, our proposed
controller can be robust and suitable to generate fast movements.
Nakaoka et al. (2004) proposed a motion planning algorithm and
the evaluation includes squatting task. In this motion planning
method, a whole body motion sequence can be composed by com-
bining motion primitives. Since the motion primitives need to be
designed for a particular motion sequence, generalization perfor-
mance of this planning method can be limited. On the other hand,
our proposed method uses linear dynamical systems as primitive
representations. Therefor, the primitives do not directly depend on
a particular movement and the proposed method may have better
generalization performance.

Using modular architecture is a practical approach toward
dealing with a large state space. Many robotics and machine
learning studies proposed modular control methods (Doya et al.,
2002; Haruno et al., 2001; Morimoto & Doya, 2001; Samejima,
Doya, & Kawato, 2003; Wiering & Schmidhuber, 1997). ‘‘Macro
actions’’ (Hauskrecht, Meuleau, Kaelbling, Dean, & Boutilier, 1998;
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Sutton, Precup, & Singh, 1999) or ‘‘sub-goals’’ (Dietterich, 2000;
Morimoto & Doya, 2001) have been used in hierarchical learning
systems. However, in themost of the previous works, eachmodule
is represented by complex nonlinear functions. In this study, each
module is represented by a linear model. Therefore, parameter
for the controller can be solved. Thus, proposed method can be
considered as more practical approach than the previousmethods.

The cost function cannot be always modeled by a quadratic
form for all tasks. In such cases it is necessary to approximate
the complex cost function. As a future study, we will consider
a hierarchical learning algorithm. In the hierarchical system, the
higher layer can be used to properly allocate local quadratic cost
functions to approximate the complex cost function.
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Appendix A. Linear optimal state estimator

The linear optimal state estimator (i.e., the Kalman filter)
assumes that dynamics and observation are linear (see Eqs. (5) and
(6)), and system noise and observation noise (n(t) and v(t)) are
zero-mean Gaussian. The optimal state estimator estimates latent
state by alternating two phases: prediction and update (Thrun,
Burgard, & Fox, 2005). The prediction phase is as follows:
x(t + 1|t) = Ax(t|t) + Bu(t) + c (A.1)

Σ(t + 1|t) = AΣ(t|t)AT
+ Σx, (A.2)

where Σx is the covariance of system noise, x(t + 1|t) and Σ(t +

1|t) are the mean and covariance of the predicted latent state at
time t + 1 based on the information of previous step t . A, B and c
are the parameter of linear dynamics in the same format as Eq. (5).
The update phase is as follows:

K = Σ(t + 1|t)HT(HΣ(t + 1|t)HT
+ Σy)

−1, (A.3)

x(t + 1) = x(t + 1|t) + K(y − Hx(t + 1|t)), (A.4)
Σ(t + 1) = (I − KH)Σ(t + 1|t), (A.5)
where Σy is the covariance of observation noise.

Appendix B. Parameters of linear models

Table 2 shows parameters of linearmodels (Ai, Bi, and ci), which
we obtained for squatting task in the real robot environment.
Table 3 also shows obtained parameters of linear models for lifting
task in the real robot environment.

Appendix C. Prior distribution of responsibility predictor

We introduce the prior probability P(i) based on ‘‘temporal
continuity’’, for the module selection. The prior can be given by

P(i) ∝
1

√
2πσ 2

exp

−

1
2σ 2

Ei(t − 1)


. (C.1)

Ei represents a smoothed square error (weighted sum from t = 0
to current time) of innovation ei(t) at time t:

Ei(t) =

t
s=0

exp

−

(t − s)1t
τ


∥ei(s)∥21t, (C.2)

where 0 < ρ is a parameter that controls the strength of the
temporal continuity and 1t is a time step of the observation.
Eq. (C.2) can be expanded to the following recursive form:

Ei(t) = ∥ei(t)∥21t + exp

−

1t
ρ


Ei(t − 1). (C.3)
Appendix D. Periodic pattern generator for two-link robot
model

The periodic pattern generator for the two-link robot model
(see Fig. 3) outputs a simple sinusoidal trajectory at each joint:

qd1 = D
1 − cosφ

2
+ qrest1 , (D.1)

qd2 = −2D
1 − cosφ

2
+ qrest2 , (D.2)

where qd1 and qd2 are the desired trajectory of the first and second
joints, qrest1 and qrest2 are rest positions, and D is amplitude of a
periodic movement.

The modified desired trajectory of the first joint which is used
by the feedback linearization is given by

qd1 = − arctan
M2Lg2 sin q2

M1Lg1 + M2L1 + M2Lg2 cos q2
. (D.3)

The two-link robot can maintain a balance of CoM (θ2) by tracking
this desired trajectory.

Appendix E. Feedback linearization

Feedback linearization (FL) uses an inverse dynamics model to
cancel nonlinear terms of original dynamics. Linear error dynamics
are then introduced. FL considers following nonlinear dynamics:

H(q)q̈ + C(q, q̇)q̇ + g(q) = τ, (E.1)

where q = [q1 q2 · · ·]
T is the position in a general coordinate, and

τ = [τ1 τ2 · · ·]
T is the control output. The control law to track the

desired trajectory qd is given by

τ = H(q)v + C(q, q̇)q̇ + g(q), (E.2)

where v is the equivalent input:

v = q̈d
− 2κ ˙̃q + κ2q̃, (E.3)

q̃ = q− qd is the position tracking error and κ is positive constant
(Slotine & Li, 1991).

Appendix F. Squatting controller

The squatting controller outputs desired trajectories at the hip,
knee and ankle joints. Each desired trajectory (θd

hip, θ
d
knee, and θd

ankle)
is given by following the central pattern generator (CPG),

θd
hip = D

1 − cosφ(t)
2

+ θ rest
hip , (F.1)

θd
knee = 2D

1 − cosφ(t)
2

+ θ rest
knee, (F.2)

θd
ankle = D

1 − cosφ(t)
2

+ θ rest
ankle, (F.3)

where D is the amplitude of a squatting movement. θ rest
hip , θ rest

knee and
θ rest
ankle define the rest posture. φ is the phase of the periodic pattern

generator.

Appendix G. Supplementary data

Supplementary material related to this article can be found
online at doi:10.1016/j.neunet.2012.01.002.

http://dx.doi.org/doi:10.1016/j.neunet.2012.01.002
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Table 2
Linear model parameters (Ai, Bi , and ci) for squatting task in the real robot environment.

i Ai Bi ci

1


1.0000 0.0000 0.0000 0.0020 0.0000 0.0000
0.0000 1.0000 0.0000 0.0000 0.0020 0.0000
0.0000 0.0000 1.0000 0.0000 0.0000 0.0020

−0.0801 −0.0043 −0.0054 0.9947 0.0012 0.0001
0.0045 −0.2328 −0.0511 −0.0011 0.9814 −0.0124

−0.0103 0.0668 −0.0093 −0.0003 −0.0018 0.9996




0.0000 0.0000
0.0000 0.0000
0.0000 0.0000
0.0023 0.0003
0.0002 0.0059
0.0001 −0.0001




0.0000
0.0000
0.0000

−0.0175
−0.0202
0.0046



2


1.0000 0.0000 0.0000 0.0020 0.0000 0.0000
0.0000 1.0000 0.0000 0.0000 0.0020 0.0000
0.0000 0.0000 1.0000 0.0000 0.0000 0.0020

−0.0979 −0.0009 0.0003 0.9950 0.0011 −0.0006
0.0030 −0.3422 −0.0731 −0.0027 0.9770 −0.0146

−0.0140 0.0695 −0.0089 −0.0005 −0.0022 0.9959




0.0000 0.0000
0.0000 0.0000
0.0000 0.0000
0.0028 0.0002
0.0004 0.0093
0.0002 0.0001




0.0000
0.0000
0.0000

−0.0216
−0.0902
0.0165



3


1.0000 0.0000 0.0000 0.0020 0.0000 0.0000
0.0000 1.0000 0.0000 0.0000 0.0020 0.0000
0.0000 0.0000 1.0000 0.0000 0.0000 0.0020

−0.0986 −0.0044 0.0010 0.9952 0.0022 0.0001
0.0003 −0.2937 −0.0477 −0.0021 0.9822 −0.0069

−0.0014 0.0984 −0.0057 0.0003 0.0004 0.9945




0.0000 0.0000
0.0000 0.0000
0.0000 0.0000
0.0028 0.0004
0.0006 0.0066

−0.0003 0.0005




0.0000
0.0000
0.0000

−0.0237
−0.1308
0.0449



Table 3
Linear model parameters (Ai, Bi , and ci) for lifting task in the real robot environment.

i Ai Bi ci

1


1.0000 0.0000 0.0000 0.0020 0.0000 0.0000
0.0000 1.0000 0.0000 0.0000 0.0020 0.0000
0.0000 0.0000 1.0000 0.0000 0.0000 0.0020

−0.0886 −0.0005 0.0004 1.0001 0.0014 0.0004
0.0239 −0.3999 −0.0039 −0.0050 0.9873 0.0147

−0.0038 0.0491 −0.0191 0.0002 −0.0111 0.9960




0.0000 0.0000
0.0000 0.0000
0.0000 0.0000
0.0003 −0.0003
0.0001 0.0069
0.0001 0.0007




0.0000
0.0000
0.0000

−0.0382
0.1012

−0.0125



2


1.0000 0.0000 0.0000 0.0020 0.0000 0.0000
0.0000 1.0000 0.0000 0.0000 0.0020 0.0000
0.0000 0.0000 1.0000 0.0000 0.0000 0.0020

−0.0867 −0.0029 −0.0001 0.9994 0.0003 −0.0010
−0.0264 −0.3879 0.0131 0.0002 0.9872 0.0098
−0.0170 0.0421 −0.0075 0.0037 −0.0094 0.9979




0.0000 0.0000
0.0000 0.0000
0.0000 0.0000
0.0007 −0.0002

−0.0004 0.0065
0.0001 0.0008




0.0000
0.0000
0.0000

−0.0365
0.0765

−0.0169
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