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Task-Specific Generalization of Discrete
and Periodic Dynamic Movement Primitives

Aleš Ude, Andrej Gams, Tamim Asfour, and Jun Morimoto

Abstract—Acquisition of new sensorimotor knowledge by imi-
tation is a promising paradigm for robot learning. To be effective,
action learning should not be limited to direct replication of move-
ments obtained during training but must also enable the generation
of actions in situations a robot has never encountered before. This
paper describes a methodology that enables the generalization of
the available sensorimotor knowledge. New actions are synthesized
by the application of statistical methods, where the goal and other
characteristics of an action are utilized as queries to create a suit-
able control policy, taking into account the current state of the
world. Nonlinear dynamic systems are employed as a motor repre-
sentation. The proposed approach enables the generation of a wide
range of policies without requiring an expert to modify the under-
lying representations to account for different task-specific features
and perceptual feedback. The paper also demonstrates that the
proposed methodology can be integrated with an active vision sys-
tem of a humanoid robot. 3-D vision data are used to provide query
points for statistical generalization. While 3-D vision on humanoid
robots with complex oculomotor systems is often difficult due to
the modeling uncertainties, we show that these uncertainties can
be accounted for by the proposed approach.

Index Terms—Active vision on humanoid robots, humanoid
robots, imitation learning, learning and adaptive systems.

I. INTRODUCTION

L EARNING of behaviors that can be applied to solve a given
task, regardless of the current configuration of the external
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world, is a difficult problem because the search space that needs
to be explored is potentially huge [1]. The size of the search
space depends both on the number of degrees of freedom of the
robot and on the objects involved in the action. Furthermore,
external objects can affect the search space indirectly. To over-
come problems arising from high-dimensional and continuous
perception-action spaces, it is necessary to guide the search pro-
cess. One of the most successful paradigms that can be used for
this purpose is imitation or robot programming by demonstration
[1], [2].

Robot programming by demonstration requires the acquisi-
tion of example trajectories, which can be captured in various
ways. Motion capture techniques based on optical- or magnetic-
tracking devices were applied successfully to replicate complex
movements on humanoid robots such as dancing, which would
be difficult to program manually [3]–[6]. Computer vision tech-
niques that aim to capture human motion without special mark-
ers are slowly getting matured [7], but the application of special-
ized tracking devices is still preferred in most of the recent works
in order to avoid the pitfalls of computer vision approaches. Al-
ternatively, a robot can be physically guided through the desired
trajectory, which is recorded proprioceptively. This method re-
quires that the robot is back-drivable [8], [9] or can compensate
for the influences of external forces [10]–[12]. The advantage of
kinesthetic guiding is that the movements are recorded directly
on the learning robot and do not need to be first transferred from
a system with different kinematics and dynamics.

A simple reproduction of the trained movements is not use-
ful for problems that involve the manipulation of objects be-
cause in such tasks the observed movements need to be adapted
to the current state of the 3-D world. Already, early research
on learning from demonstration has stressed the importance of
task segmentation and the extraction of meaningful action units
[13]–[15].

The main interest of this paper is in the generalization of the
available action knowledge regardless of how this knowledge
was initially acquired. A methodology that can adapt single
trajectories obtained by imitation was proposed by Miyamoto
et al. [16]. They made use of a spline-based representation for
the desired trajectory, which they referred to as via points. By
monitoring its performance, the robot was able to continuously
adapt the via points until it could play a fairly difficult Japanese
game of kendama or execute tennis serves. This type of ap-
proach has later been studied in the frame of modern rein-
forcement learning theories [9]. One of the main issues is the
speed of convergence, which is important for online applica-
tions of reinforcement learning and is an active topic of research
[17], [18].
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Numerous representations have been proposed to encode
robot trajectories for learning. Spline-based representations like
the one utilized in [16] have been employed in robotics in many
contexts [19], but their explicit dependency on time can be
cumbersome [20]. Hidden Markov models (HMMs) are another
popular methodology to encode and generalize the observed
trajectories [21]–[23]. It has been shown that HMMs can be
used effectively for motion and action recognition [23] and
to determine which control variables should be imitated and
how [22]. Kulić et al. [24], [25] extended these works by show-
ing how to use HMMs to automatically cluster large databases
of movements into the constituent motor primitives. Gaussian
mixture models [26] provide another motor representation with
some advantages over HMMs during reproduction of the learned
movements. Calinon et al. [26] also demonstrated how move-
ments can be generalized by taking into account different analyt-
ically specified constraints between hands and objects. Yamane
et al. [27] proposed a graph-theoretical approach that organizes
the captured data in a large motion database. In their work, the
problem of motion generation becomes a search problem.

A fundamentally different approach to motion representation
based on nonlinear dynamic systems as policy primitives was
proposed in [28] and [29]. The resulting control policies were
termed as dynamic movement primitives (DMPs). DMPs are
based on systems of second-order differential equations, which
encode the properties of the desired motion. Ijspeert et al. [28],
[29] developed equations for periodic and discrete movements
and demonstrated the learning of tasks such as tennis strokes
and drumming. One of the most important advantages of DMPs
is the ability to take into account perturbations and to include
feedback terms. Feedback terms can be added to change the
timing [20] and/or avoid some areas of the workspace. Another
approach based on the idea of dynamic systems of Ijspeert et al.
is described in [8], where the final trajectory is generated as a
linear combination of attractor dynamics and Gaussian mixture
models that were learned from example trajectories.

A. Contribution of This Paper and Related Work

The main purpose of this paper is to propose and experi-
mentally evaluate a methodology for generalization of exam-
ple trajectories to new situations that were not observed during
training, using a representation suitable for robot control. To this
end, every example trajectory is associated with parameters that
describe the characteristics of the task, typically its goal, and
serve as query points into an example database. For instance, in
our experiments, we studied the problem of ball throwing to-
ward a specified target. In these experiments, we first acquired
a set of example robot trajectories that resulted in ball throws
toward different targets. The task of generalization is to synthe-
size throws toward any given target within the training space.
The parameters specifying the goal of the task are, in this case,
the target positions.

Our work was inspired by motor-tape theories, in which
example movement trajectories are stored directly in mem-
ory [30], [31]. Initial implementations of this theory were based
on lookup tables [32] that cannot generalize. More modern ver-

sions interpret the task of generalization as a problem of fitting
a multivariate function to the stored training data, where the fit-
ted function must generalize to new situations [30]. Regression
methods based on local weighting of training data at execution
time can be applied for this purpose. They have proven to be
sufficiently efficient for online control [33].

We utilize nonlinear dynamic systems as a basic motor rep-
resentation. Other researchers have shown that by changing the
underlying differential equations, DMPs can be modified in sev-
eral ways to account for various perturbations that might occur
during the execution of the task. For example, it has been sug-
gested to add terms that enable obstacle avoidance to the basic
DMP equations [34], [35]. Such modifications are very useful,
but they are necessarily designed for one particular issue only.
For each new problem, an expert must redesign the underlying
dynamic system, which is unsatisfactory for robots that need to
solve new problems every day. The approach proposed in this
paper enables the generalization of DMPs to new situations us-
ing the available training movements and the goal of the task,
which can normally be specified in a natural way. Since the gen-
eralized trajectories are encoded as standard DMPs, we are still
able to apply analytical modifications of the underlying dynamic
system at execution time in order to account for unforeseen per-
turbations, which are not part of the training data. In addition,
Section III-C demonstrates that the proposed approach is suit-
able for online integration with a humanoid robot’s active vision.

It is also possible to generalize the example movements to
new situations by specifying constraints and weighting them
with respect to their importance for the task [22]. For example,
if the initial positions on the training trajectories are found to
be less important, the robot can modify its motion to reach the
final position from a different initial position at the expense of
fidelity of reproduction. Systems like this require an analytical
model to describe the constraints. The approach proposed in this
paper requires no physical models of the task to be specified;
generalization is done in a statistical way.

Another methodology for taking into account external vari-
ables was proposed in [36], where—instead of synthesizing the
optimal DMP parameters at execution time as in our approach—
the basic DMP equations were modified by coupling them with
the perceptual input. This coupling provides additional parame-
ters that can be used to learn a more globally valid representation
as opposed to the local one generated by our system. As shown
in [36], the external variables have a similar role as query points
into the example database in our approach. It is, however, more
difficult to ensure that such a system learns all interdependencies
between the perceptual input and the DMP parameters because,
in general, it is unknown how many additional degrees of free-
dom are needed. This problem is avoided by using local models.
Our work is also related to the theories in which generalization
takes place through a combination of motor primitives [37].
An architecture that linearly combines internal models, which
can be regarded conceptually as motor primitives, based on the
output of a responsibility estimator has been proposed in [38]
and tested in simulation [39]. Work under progress has been
reported in [18], where motor primitives are linearly combined
based on the output of a gating network. Such an approach takes
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generalization to a higher abstraction level away from the train-
ing data, which reduces the dimensionality of the problem but
makes accurate generalization more difficult.

II. ACTION GENERALIZATION USING DYNAMIC MOVEMENT

PRIMITIVES AND LOCAL WEIGHTING

Let us assume that we have a set of example trajectories
together with the parameters characterizing the task

Z = {yk
d (tk,j ), ẏk

d (tk,j ), ÿk
d (tk,j );qk |k = 1, . . . ,M

j = 1, . . . , Tk} (1)

where yk
d (tj ), ẏk

d (tj ), and ÿk
d (tj ) are the measured positions,

velocities, and accelerations on trajectory k, M is the number
of examples, and Tk the number of sampling points on each
trajectory. qk ∈ R

n are the parameters describing the task in
a given example situation and are usually related to the goal
of an action. In our system, they are used as query points into
a database of example trajectories. Such data can be obtained
either by kinesthetic guiding or from human demonstrations.
The trajectories can be specified either in joint or task space. In
a DMP formulation (see Appendix A for a brief review of the
DMP representation), every degree of freedom is described by
its own dynamic system but with a common phase to synchro-
nize them. Indexing of the degrees of freedom is omitted from
(1) for clarity. The issue is how to generate a DMP specifying
a movement for every new query point q, which, in general,
will not be one of the example queries qk . As explained in
Appendix A, DMPs are specified by parameters w, τ (or
Ω = 1/τ in case of periodic movements), and g. Thus, we need
to learn a function

G (Z) : q �−→ [wT , τ, g]T . (2)

ExamplesZ specified in (1) are the data used for learning. While
the problem of learning of g and τ has also been studied in [18],
here, the complete learning problem is treated.

In general, the functional relationship between q and
[wT , τ, g]T given a set of examples Z is unknown. In most
cases, it is difficult to find a global model that provides good ap-
proximation for the function G(Z). We therefore avoid global
model identification and rather apply regression techniques to
generalize the movements. Due to significantly different sizes
of datasets involved in the calculation of parameters w on the
one hand, and g and τ on the other hand, we propose to employ
different methods to estimate them. More specifically, we ap-
plied locally weighted regression (LWR), which is a regression
method that fits local models to nearby data [40], for the esti-
mation of w. LWR has a lower computational complexity than
many other nonparametric regression methods including Gaus-
sian process regression (GPR) [41]. On the other hand, due to
its high accuracy, we utilized GPR [42] to estimate g and τ .
Another advantage of GPR is that there is no need to determine
the place and number of basis functions. However, its compu-
tational cost can be prohibitive especially in the case of online
learning, where the dataset gradually increases in size. This was
not a problem when learning g and τ in our experiments.

Our case studies include tasks such as reaching, ball throwing,
and drumming. In the case of reaching movements, the goal
of an action (or query point) was simply the final reaching
destination in Cartesian space, whereas the trajectories and,
consequently, the attractor points of the DMPs were defined in
joint space. Thus, the query and attractor points were connected
through the robot kinematics. In other cases, the queries were
less directly associated with the parameters of the DMP. For
example, in the case of ball throwing, the goal was characterized
by the position of the basket into which the ball should be
thrown. This position is not directly encoded in the parameters
of the discrete DMP, as given by (25) and (26), shown later.
As example of periodic movements, we studied drumming on a
cymbal and a drum, where the height at which the cymbal was
mounted varied. The robot adapted its drumming movements
to the varying height of the cymbal. In this case, the height
of the cymbal was used as query point, which is again not
directly encoded in the periodic DMP equations (28) and (29),
shown later. In summary, the query points normally originate
from an intuitive characterization of the task, but the functional
relationship between them and the DMP parameters may not be
straightforward.

Note that G(Z) becomes a function only by constraining the
solution trajectory to be as similar as possible to the example
trajectories. For example, there are many different ways of how
to throw a ball into a basket at a certain location. The rela-
tionship between the basket positions (query points) and DMP
parameters as given in (2) becomes a function by requesting that
the generalized throwing movements are similar to the example
throws. The similarity criterion is embedded into the regression
process in our practical implementation.

In the following, we provide a methodology to generate new
DMPs for situations that are not part of the example database. To
fully specify a DMP that defines a movement in a new situation,
we need to estimate the shape parameters w, goal g, and, respec-
tively, the time constant τ in case of discrete movements and
frequency Ω in case of periodic movements. Section II-A first
explains the generation of DMPs using only one training trajec-
tory. We continue the description of the estimation of parameters
w for discrete (see Section II-B) and periodic movements (see
Section II-C). Section II-D deals with the estimation of other
DMP parameters that vary from example to example (g and τ or
Ω). The rest of the DMP parameters (αz , βz , and αx ) are fixed
and are determined so that the convergence of the underlying
dynamic system is guaranteed.

A. Reproduction From Single Demonstration

With the DMP representation of Appendix A, the trajectory
of any smooth movement can be approximated by adapting the
parameters wi of (23) and (27). The system of two first-order
linear equations (25) and (26) in the case of discrete movements
and (28) and (29) in the case of periodic movements can be
rewritten into one second-order equation by replacing z with τ ẏ
in (25) and (28), respectively

τ 2 ÿ + αzτ ẏ − αzβz (g − y) = f (3)
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with f defined as in (23) and (27). All of the above-mentioned
equations are shown later in Appendix A. The formula τ =
1/Ω is used in the case of periodic movements. Note that time
constant τ must be the same for all degrees of freedom. In our
experiments with discrete movements, we used τ = tT , where
tT is the duration of the training movement. On the other hand,
the attractor points g vary across the degrees of freedom. They
can be extracted directly from the data as g = yd(tT ) in the
case of discrete movements and g =

∑
j yd(tj )/T in the case

of periodic movements. Writing

F (tj ) = τ 2 ÿd(tj ) + αzτ ẏd(tj ) − αzβz (g − yd(tj ))

f =


 F (t1)

. . .
F (tT )


 , w =


 w1

. . .
wN


 (4)

we obtain the following system of linear equations:

Xw = f (5)

which needs to be solved to estimate the remaining parameters
of a DMP that describe the desired motion. In the case of discrete
movements, we have

X =




Ψ1(x1)∑N
i=1 Ψi(x1)

x1 . . .
ΨN (x1)∑N
i=1 Ψi(x1)

x1

. . . . . . . . .

Ψ1(xT )∑N
i=1 Ψi(xT )

xT . . .
ΨN (xT )∑N
i=1 Ψi(xT )

xT


 (6)

and in the case of periodic movements

X = r




Γ1(φ1)∑N
i=1 Γi(φ1)

. . .
ΓN (φ1)∑N
i=1 Γi(φ1)

. . . . . . . . .

Γ1(φT )∑N
i=1 Ψi(φT )

. . .
ΓN (φT )∑N
i=1 Γi(φT )


 . (7)

Here, xi and φi are obtained by respective integration of (24)
and (30), shown later. The parameters w can be calculated from
the solution of the above systems of linear equations in a least-
squares sense.

While it is common to estimate discrete movements using sin-
gle demonstrations and the aforesaid batch approach, periodic
movements are more often estimated recursively by repeating
the movement a number of times. Note that the integration of
(28)–(30), shown later, requires that the frequency of movement
Ω is known. Unlike time duration, this frequency is not directly
observable and must be estimated. It has been suggested to re-
place (30), shown later, with the system of adaptive frequency
oscillators [43], [44] (see also Appendix B) to automatically
determine the frequency during demonstration. The waveform
estimation can then be realized by solving the equation system
(5) using recursive least squares with a forgetting factor

Pj =
1
λ

(
Pj−1 −

Pj−1xjxT
j Pj−1

λ + xT
j Pj−1xj

)
(8)

wj = wj−1 + (fj − xT
j wj−1)Pjxj (9)

where P0 = I, w0 = 0, fj = F (tj ), xj is the M -dimensional
column vector associated with the corresponding row of the
system matrix X, 0 < λ ≤ 1 is the forgetting factor, and the
final weights are given as w = wT .

It is important to note that with this system, the frequency
estimation should be done simultaneously with the recursive
estimation of the form parameters w; at each time tj , first the
current Ω is estimated by integrating (31)–(33), shown later. The
estimated Ω is then used to calculate the target values F (tj ) of
(4), where again, τ = 1/Ω. Finally, the new estimate wj is cal-
culated using the recursion (8) and (9). Thus, training can be
organized as a coaching process; the coach demonstrates the
movement, the robot simultaneously executes the movement
using the currently estimated parameters, and the coach stops
the demonstration once he/she is satisfied with the robot’s per-
formance. This approach is similar to the idea proposed in [45],
where the transfer of human motor skills to the robot is sup-
ported by a training system that keeps the human instructor and
the robot in a real-time control loop. Note that (8) includes the
forgetting factor λ; thus, later training data have more influence
on the estimated parameters than earlier data.

In the aforesaid equations, αx, αz , and βz are constant. They
are set so that the convergence of the underlying dynamic system
is ensured [20]. Unlike in some other works where the param-
eters wi are estimated independently of each other [28], [29],
we apply a full linear system (5) to estimate w. In this way, we
can approximate trajectories more accurately because we can
take into account the interplay between the neighboring basis
functions Ψi of (23) and (27), shown later, which benefits gen-
eralization. Note that the separate estimation of {wi} has its
advantages, especially in the presence of noise when overfitting
can become a problem or when {wi} are used for classifica-
tion [29]. However, here the example trajectories are trained
movements suitable for execution on a robot. They are therefore
relatively noise-free, which alleviates the danger of overfitting.
It was therefore sufficient in our experiments to determine the
parameters ci and hi by setting the distribution pattern1 and
increasing N until the desired reconstruction accuracy on all ex-
ample trajectories was achieved. More advanced methods [46]
could be applied to determine N, ci, and hi if overfitting became
a problem.

B. Generalization of Discrete Movements

In one-shot learning of Section II-A, all data are relevant for
the estimation of shape parameters w. Such global optimization
approaches are problematic for generalization from multiple ex-
amples because, in general, no global task models are available.
Control policies that solve the task in situations, which are very
different from the current one, do not carry much information
about the optimal policy in the current situation. Taking the
example of ball throwing, it is reasonable to assume that the
trajectories associated with target positions close to the current

1For a given N , ci = exp(−αx
i−1
N −1 ), hi = 2

(c i + 1 −c i )2 , hN = hN −1 ,

i = 1, . . . , N .



804 IEEE TRANSACTIONS ON ROBOTICS, VOL. 26, NO. 5, OCTOBER 2010

target are more relevant than example trajectories associated
with more distant targets.

The synthesis of shape parameters w is based on the sampled
trajectory points included in the training dataset (1). Since the
number of sampling points is usually very large, it is beneficial
to apply a method with relatively low computational complexity,
such as, for example, locally weighted regression. In an LWR
setting and for a given query point q, the optimal parameters
can be calculated directly from the available data by minimizing
the objective function

C(w;q) =
∑

k

L(Ξ(qk ,w), fk )K(d(q,qk )). (10)

Based on (5), local models are characterized by

L(Ξ(qk ,w), fk ) = ‖Xkw − fk‖2 (11)

where Ξ(qk ,w) = Xkw. Xk needs to be calculated as in (6) for
discrete or in (7) for periodic movements. fk can be computed
as in (4) but using the generalized τ and g (see Section II-D).
We need to minimize the objective function

M∑
k=1

‖Xkw − fk‖2 K(d(q,qk )) (12)

with respect to w. Here, K is the kernel function and d is the
metrics in the space of query points q.

There are many possibilities to select the weighting kernel
K [40]. We chose the tricube kernel

K(d) =
{

(1 − |d|3)3 , if |d| < 1

0, otherwise
(13)

because this kernel has finite extent and a continuous first and
second derivative, which means that the first two derivatives of
the prediction (as a function of query points) are also continuous.
The finite support of K reduces the computational complexity of
the optimization problem (12) because the example trajectories
for which K vanishes do not influence generalization. In this
way, we reduce the size of the system matrix associated with the
objective function (12). As discussed in [40] and [47], the choice
of weighting function is rarely critical for the performance of
locally weighted regression. The selected kernel performed well
in our experiments.

K and distance d in the space of query points determine how
much influence each of the example movements has on the final
estimate of the control policy. The influence of each example
movement should diminish with the distance of the query point
q from the data point qk . A standard weighted Euclidean dis-
tance can be used when query points are given in Euclidean
space

d(q,qk ) = ‖D(q − qk )‖, D = diag(1/ai), ai > 0. (14)

Ideally, D should be determined so that the error in the execu-
tion of the task is as small as possible. To reduce the resulting
problem to a 1-D optimization problem while still accounting
for the possibly varying spacing across dimensions of the query
point space, we defined

ai = c ∗ max
j=1,...,M

min
k=1,...,M

{|qj,i − qk,i}. (15)

In this way, D is fully specified by a parameter c ∈ R, which
we calculated by minimizing the validation set error [40] (see
also Section III-D). Such an approach is sufficient if the data are
approximately equally distributed along the coordinates axes,
as it was in all our experiments. The validation set-error method
evaluates the difference between the predicted output and the
observed value in the validation set, where the data in the val-
idation set are not used for training. The minimization of the
validation-set error gave better results on regularly spaced train-
ing data than leave-one-out cross-validation method because it
could better take into account the in-between query points. In
all of our experiments, the data were approximately regularly
spaced and we obtained the optimal value c ≈ 2.2. With such c,
the number of example trajectories with nonzero K(d(q,qk ))
was about 4n .

The computational complexity of solving the least-squares
system (12) is O(N 2T ), T ≤

∑M
k=1 Tk and thus increases lin-

early with the number of data points considered by LWR and
quadratically with the number of radial basis functions used in
(23) and (27), shown later, respectively. Due to our choice of
weighting kernel K, we normally have K(d(q,qk )) = 0 for
many k. Moreover, by cutting the support of basis functions
(23) and (27), shown later, once their value falls below a certain
threshold, matrices Xk become sparse as well. The quadratic
dependence on the number of basis functions is not a problem
because this number is generally much lower than the number
of data points. In most of our experiments, there were around
10 000–50 000 data points and 25–50 basis functions for DMPs.
These facts make computational complexity sufficiently low to
resolve the least-squares problem (12) online using standard
methods from sparse-matrix algebra.

C. Generalization of Periodic Movements

In Section II-A, we describe a method that estimates the pa-
rameters of a DMP to reproduce a demonstrated periodic trajec-
tory. The simultaneous and recursive estimation of frequency Ω
and form parameters w allows the robot to reproduce the demon-
strated motion immediately, which is important for coaching. To
generalize the learned movements to new situations, we store
the estimated frequencies and the sampled movements from the
last few movement periods, which produced a good movement
on the robot as judged by the teacher. In our experiments, we
used the last five periods.

The aforementioned training process makes the fol-
lowing data available for generalization purposes: Tra-
jectory data points within the last few periods of motion
{yk

d (tk,j ), ẏk
d (tk,j ), ÿk

d (tk,j )|k = 1, . . . ,M, j = 1, . . . , Tk}
and the associated frequencies Ωk . Each trajectory is also
associated with query parameters qk ∈ R

n . Given a new
query point q, we could now directly the minimize objective
function (12) to calculate the new parameters w. However,
since the data were acquired by recursive least squares with
forgetting factor λ, it is necessary to generalize recursively as
well. In this way, we ensure that the generalization process
discounts earlier training data in the same way as the coaching
process. To achieve this, we need to parse all of the sampled
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Fig. 1. Procedure for the generalization of periodic movements.

trajectory points in a proper order. For this purpose, it is
necessary to maintain a separate phase information for every
example trajectory to account for different frequencies during
the generalization process. The resulting procedure shown in
Fig. 1 ensures that the data from all of the trajectories are parsed
and discounted across example trajectories in the same way as
during coaching.

D. Estimation of Attractor Points, Timings, and Frequencies

Unlike αx, αz , βz , and N , which are kept constant across
the example trajectories during generalization, time constant τ
in the case of discrete movements and frequency Ω in the case of
periodic patterns as well as the attractor points gi, i = 1, . . . , D,
where D is the dimension of the space in which the motion is
specified, change from example to example. We extract these
parameters from the training data (see Section II-A), which
enables us to estimate the function that transforms query points
q into τ , Ω, and gi, i = 1, . . . , D, directly.

Among various paradigms that could be used for this purpose,
Gaussian process regression (GPR) has proven to be especially
effective. It is a Bayesian regression method that provides a
predictive distribution. GPR exhibits good generalization per-
formance and the predictive distribution can be used to mea-
sure the uncertainty of the estimated function. Complexity of
the model can be adaptively changed according to the newly
acquired sampled data. There is no need to explicitly place ad-
ditional basis functions and parameters. Simultaneously, GPR
can avoid the danger of overfitting. It has been shown that this
technique outperforms other regression methods on some rele-
vant robotic problems such as estimating inverse dynamics of a
seven degrees of freedom robotic arm [42]. Since the number
of training data points is much lower when estimating τ , Ω, and
gi than when estimating the form parameters w (now it is the
same as the number of training trajectories, before we had to
consider all of the sampled points on the example trajectories),
the computational complexity is not a problem and we selected
GPR for the estimation of these parameters. A brief review of
GPR is given in Appendix C.

With GPR, new estimates are calculated using (36) from the
Appendix. The most computationally expensive part of this for-
mula is the calculation of [K(Q,Q) + σ2

nI]−1 , but since this
matrix depends only on the training data, the necessary calcu-

Fig. 2. Training and generalization of goal-directed actions (for one dimension
of the space in which trajectories are defined).

lations can be done off-line using, for example, the Cholesky
decomposition. Note that by writing

z = [K(Q,Q) + σ2
nI]−1y (16)

(36) and the new parameters ȳ∗, i.e., τ̄ ∗, Ω̄∗, and ḡ∗i , associated
with the query Q∗ = q∗ can be written as

ȳ∗ =
M∑

k=1

k(q∗,qk )zk . (17)

Thus, similarly as in LWR technique of (12), the data are
weighted based on the distance between training query points
and the current query point; hence, nearby training points influ-
ence the result more. To generate a new movement, the robot
is given a desired query point. Using GPR, gi and τ (or Ω) for
this query are calculated. The optimal parameters w are then
estimated using the algorithms of Section II-B or C. The sketch
of the complete training and generalization procedure is given
in Fig. 2.

III. EXPERIMENTS

We conducted a number of experiments to demonstrate the
usefulness of the proposed approach. The following tests were
done for discrete movements: 1) a reaching study in simulation
and on a real robot to evaluate the accuracy of reproduction
when learning discrete movements, 2) experiments with a full-
size humanoid robot that connect the proposed approach with
active vision and also demonstrate grasping, and 3) a simulated
and a real-world ball-throwing study that confirm that also more
dynamic aspects of the task can be generalized. To validate
the generalization of periodic movements, we conducted 1) a
simulated periodic-pattern-movement study and 2) a real-world
drumming experiment.

Two humanoid robots were used to validate the proposed
approach: a small humanoid robot HOAP-3 built by Fujitsu
Automation and a full-size humanoid robot CB-i built in collab-
oration between Sarcos, ATR, and JST [48]. Both robots enable
the acquisition of trajectories via kinesthetic guiding. CB-i is,
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Fig. 3. Forty-five example trajectories in joint space calculated via inverse
kinematics from Cartesian space minimum-jerk trajectories (left) and the final
reaching points in Cartesian space (right). The Cartesian space positions are
used as query points. The outer rectangle shows the full training area; the inner
rectangle shows the inner training area where training data are available from
all sides of the query points.

TABLE I
ERRORS IN REACHING MOVEMENTS (IN DEGREES AND CENTIMETERS,

RESPECTIVELY) SYNTHESIZED BY LWR AND GPR

however, a much more capable system that enabled us to study
the learning of control policies integrated with a full-fledged
active humanoid vision. In our throwing experiments, we used
a seven degree-of-freedom Mitsubishi PA-10 robotic arm.

A. Simulated Reaching Study

In the first computational study, we examined how well
Cartesian minimum-jerk trajectories can be generalized. Min-
imum jerk trajectories are often used in robotics because they
resemble human-reaching trajectories [49]. For training, we gen-
erated 45 Cartesian minimum-jerk trajectories, which were con-
verted into joint space of a planar 2R robot (see Fig. 3, left).
The final end-effector positions on the trajectories were used
as query points. The training query points were distributed uni-
formly with spacing of 0.1 m in a rectangular area with corners at
locations (0.2,−0.5) and (0.6, 0.3) m (Fig. 3, right). Joint ve-
locities and accelerations were computed analytically.

As described in Section II, we applied LWR to synthesize
the form parameters w of the DMP, while GPR was utilized to
learn the function from query points (desired goal position in
Cartesian space) to attractor points (the final joint configuration)
and to time duration. Thus, here the relationship between query
points and attractor points is given by the standard inverse kine-
matics. While problems with nonconvexity of the movement
space2 may arise in less-constraint situations, we did not ob-
serve such problems in our experiments. This observation is

2These problems can be addressed by biasing [50] or re-weighting [51] the
data.

TABLE II
ERRORS IN REACHING MOVEMENTS (IN DEGREES AND CENTIMETERS,

RESPECTIVELY) GENERATED BY A SINGLE DMP, WHICH WAS TRAINED

TO REPRODUCE ONE OF THE EXAMPLE TRAJECTORIES

probably due to the fact that we do not need to learn a full
inverse kinematics of the robot. Hence, the inverse kinematics
learning is limited to a small portion of the workspace covered
by query points, and the learning procedure is less likely to
encounter the potentially problematic areas.

The errors in Tables I and II were computed by com-
paring generalized joint trajectories ỹ(tj ) (calculated by in-
tegrating (24)–(26), shown later, with the analytically com-
puted minimum-jerk trajectories y(tj ), both specified in the
robot joint space. The average (18), shown below, and max-
imum error (19), shown below, on the trajectories were
estimated as

erroraverage =
1
T

T∑
j=1

‖ỹ(tj ) − y(tj )‖ (18)

errormax = max
j=1,...,T

‖ỹ(tj ) − y(tj )‖. (19)

Query points, at which the generalized and analytical trajecto-
ries were computed, were sampled across the complete training
space. Results in Table I demonstrate that minimum-jerk move-
ments can be generalized with high precision. The generalized
trajectories accurately approximate the spatial course of move-
ment and the final configuration. Since it can be expected that
errors are larger on the boundary of query points used for train-
ing, we estimated the errors both within the full rectangular area
enclosed by all query points of Fig. 3 and in a more limited
inner training area enclosed by query points situated at least one
query point away from the boundary points. As expected, the
errors were significantly smaller when testing was limited to the
internal training area.

Table II shows that representation with only one DMP is too
rough for a precise movement reproduction. While the final
position could be reached accurately due to the properties of
DMPs, the trajectory-reproduction accuracy (18) is worse by an
order of magnitude compared with the precision of the proposed
approach. The columns describing the Cartesian-space error in
both tables show that GPR is successful at estimating the inverse
kinematics of the robot in a limited subset of the workspace. The
error is larger in Table II than in Table I because the execution
was stopped at time τ . The DMP obtained by generalization
arrives at the goal within the specified time, whereas the DMP
that was trained to reproduce one of the example trajectories
needs more time to reach a modified attractor point.
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Fig. 4. Image sequence showing the teaching of reaching trajectories to
HOAP-3 humanoid robot with kinesthetic guiding. Teaching of reaching move-
ments to CB-i was done in a similar way.

Fig. 5. Query points and example trajectories for the reaching experiment on
HOAP-3. The goals, i.e., final destinations, of the demonstrated movements are
marked with circles. The robot’s arm with the shoulder (RGH) and elbow (REB)
joints is also shown.

B. Real-World Reaching

We also tested the proposed approach for the generalization of
reaching movements on a humanoid robot HOAP-3. By means
of kinesthetic guiding (see Fig. 4), we recorded a set of 25
reaching movements, which were used to build a library of
example movements. The example trajectories in task space
and the associated query points are presented in Fig. 5. All
movements roughly originated from the same starting position
(P0) and ended on a grid roughly in the coronal plane of the
robot, ∼0.15 m in front of it.

The robot’s forward kinematics was used to obtain the fi-
nal end-effector’s positions in Cartesian space on the trajectory.
Gaussian process regression (see Section II-D) was applied to
estimate the function from these positions, which served as
query points, to the corresponding joint angles at the final con-
figuration on the trajectory. Since the robot is redundant with
respect to the task, GPR also learns to resolve redundancies
within the demonstrated, limited subset of the workspace using
the same redundancy resolution strategy as demonstrated during
training. Four joints (three in the shoulder and one in the elbow)
were used in this experiment.

Fig. 6 shows the generalized Cartesian trajectories projected
onto the yz plane. The generalized trajectories, which are pre-
sented in bold, resemble the example reaching trajectories asso-
ciated with the nearest demonstrations, which are presented by
thin solid lines. The generalization procedure continuously tran-
sitions between example trajectories when changing the query

Fig. 6. Evaluation of a real-world reaching experiment. Both graphs show the
results of generalization when query points smoothly change along a dimension
of the query-point space. The generalized joint trajectories (bold) resemble
the trajectories of the nearby demonstrations (thin). The left graph shows the
changing of the query point in y direction and the right graph in the z direction.
Note that the y axis is reversed to preserve similarity to Fig. 5. Query points
associated with training trajectories are presented with full circles and the query
points for generalized movements with empty circles.

points in both the y and z directions, while x remains roughly
the same, just as in the demonstrations. Thus, we can con-
firm the simulation results from Section III-A in a real-world
experiment.

C. Integration With Active Vision and Grasping

In our next experiment, we focused on the integration of
the proposed approach with active vision and grasping, which
demonstrates high performance that can be achieved by the de-
veloped system (see Figs. 7 and 8). The role of active vision is
to provide parameters characterizing the task, i.e., query points.
In the case of reaching and grasping, the task is characterized by
the position of an object to be grasped. The use of active vision
is essential if the robot is to find and grasp objects in a natural
way. In this experiment, we used a full-size humanoid robot
CB-i. Like in the case of HOAP-3, the training data were ob-
tained by guiding the robot through 25 example trajectories.
Besides reaching toward the desired positions, the acquired tra-
jectories also avoid the table. Unlike in the case of HOAP-3, the
positions of the target object were acquired by the robot’s own
visual system.

CB-i’s oculomotor system has seven degrees of freedom
(three in the neck and two in each eye), which ensures flexi-
bility when the robot needs to find and direct its view toward
new objects. To compute 3-D data in body coordinates by stereo
vision, a robot with such a visual system must continuously up-
date the position and orientation of the cameras, which depend
on the current joint configuration of the robot, in the robot-body
coordinate frame. The appropriate estimation and calibration
procedures are described in [52]. This work showed that even
with carefully designed calibration procedures, it is difficult to
estimate all necessary coordinate-frame transformations with
high accuracy. As a consequence, we cannot rely on a very
accurate 3-D vision on a full-size humanoid robot with a high-
degree-of-freedom oculomotor system.

The core part that integrates active vision with the devel-
oped generalization approach is the estimation of the func-
tion that maps the desired Cartesian positions (query points) to
the final joint positions (DMP-attractor points) on the training
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Fig. 7. Image sequence showing the robot reaching over the edge of the table toward a target. The robot tracks the target with its own eyes and determines the
target’s location, which is used to generate a new attractor point g for the DMP using GPR. This process runs in real time. The initially open-loop movement that
avoids the table thus gradually transforms into a closed-loop movement that follows the object. Note the different head and eyes postures in the images.

Fig. 8. Image sequence illustrating the grasping process. The head and eyes actively follow the object. The robot applied a power grasp to pick up the object.

trajectories. This function is estimated by Gaussian process re-
gression as outlined in Section II-D.

As shown in Fig. 7, the robot needs to avoid the table while
reaching toward the object. Based on the training trajectories
that avoid the table, the system generates new trajectories that
also avoid the table, but at the same time end at the desired
Cartesian positions. Without generalizing the shape parame-
ters w, the robot’s arm would collide with the table. The first
three images of Fig. 7 and video discrete-reach-open.mov,
which is attached to this paper and can be downloaded from
http://ieeexplore.ieee.org, show the successful open-loop reach-
ing movements that avoid the table. Once the robot’s arm reaches
over the table, we start updating the attractor point g in real time
using the results of active vision and GPR. No additional pro-
gramming was needed to create the closed-loop behavior, just
active vision was allowed to update the attractor points. The-
oretically, it is possible to update the shape parameters w as
well, but depending on the amount of data, this calculation may
require a few hundred milliseconds and is therefore unsuitable
for feedback control. Once the time exceeds τ , the influence
of parameters w starts diminishing and the robot generates its
motion based solely on the attractor dynamics and GPR, which
again results in collision-free movements (because the training
examples are collision-free). The last three images of Fig. 7
and the attached video discrete-reach-closed.mov show that
the robot can successfully follow a moving object, thus demon-
strating the power of the DMP representation when reacting to
the external feedback and the accuracy of GPR when filtering
visual information.

The resulting robot-hand path while following the object in a
closed-loop is depicted in Fig. 9. The mean value of the robot-
hand position while following the object that moves on the
table (as calculated by forward kinematics) and the mean value
of the object position (as estimated by active vision) differ by
about [1.6, 4.2, 7.6] cm. Although the real modeling errors are

nonlinear, the error would be roughly similar if we just estimated
object positions and converted them into joint angles by means
of inverse kinematics. Such an error would be too large for
reaching and grasping. In our system, GPR successfully corrects
at least part of the modeling errors and the resulting attractor
points are accurate enough for these tasks. This is due to the
fact that already during training, the system directly relates the
object positions as estimated by vision to the final robot-joint
configurations. The vision errors can therefore be taken into
account by GPR, the system only needs to be repeatable.

The realized grasping behavior is shown in Fig. 8 and in
the attached video discrete-grasping.mov. Active vision de-
tects when the object stops moving and initiates the open-loop
reaching. The attractor points for the initial reaching trajectory
are generated by suitably displacing the estimated query points
(based on the desired approach direction). After the initial reach-
ing movement has finished, the vision system starts supplying
the current object position and the second-order attractor dy-
namics automatically generates a closed-loop approach motion
for grasping. The system is accurate enough to pick an object
from the hand of a person. Note that without active eye and
head joints, the robot would not be able to follow the object,
especially when it comes close to the body, and the behavior
could not be generated.

D. Simulated Ball Throwing

To demonstrate the performance of the approach for the syn-
thesis of more dynamic tasks, we considered the task of throwing
a ball into a basket using the same 2R robot for simulation as
in reaching. Throwing depends not only on the positional part
of the movement but on velocities as well. The trajectory of
the ball after the release is fully specified by the position and
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Fig. 9. The upper image shows the 3-D path of the robot’s hand (calculated
by forward kinematics) while reaching and tracking an object (red). The object
positions estimated by active vision are shown in green, while the blue curve
shows the estimated object positions with corrected mean value so that it co-
incides with the mean of the hand motion. The lower image shows the same
data projected onto a plane, which is roughly parallel to the table. The proposed
approach is successful at correcting systematic vision errors.

velocity at the release time

x = x0 + v0t cos(α), y = y0 + v0t sin(α) − gt2

2
(20)

where (x0 , y0) is the release point, v0 is the linear velocity of
the ball at the release time, and α is the initial angle of the
throw path. We considered the problem where the target basket
is placed in xy-plane. The understanding of the physics of the
task allows us to compare movement generalization results with
an ideal system. Local models were also studied in [53] to refine
the throwing performance but not to generalize the throws over
the complete training space.

The target positions, i e., the positions where the ball is sup-
posed to land, were used as query points. The training-query
points were uniformly distributed within a rectangular area with
corners at (1.2, 0.1) and (5.2, 2.1) m, with different spacings
as shown in Table III. Based on (20), example movements with
proper position and velocity at release times were analytically
generated for the training targets. To avoid accurately modeling
the physical grip and the release of the ball from the hand—
which is rather complex to model but would not contribute
much to our analysis—we also attached the release time to
every training trajectory (besides the usual duration and attrac-
tor points). This was not necessary to do on a real robot (see
Section III-E). For evaluation, new query points were generated

TABLE III
ERRORS IN THE SYNTHESIZED BALL THROWS (DISTANCE FROM THE TARGET

IN CENTIMETERS)

Fig. 10. Simulation results. (Top left) Joint velocities originating from 45
training trajectories. Only the relevant parts of the throwing trajectories (up
to the release time) are displayed. (Bottom left) Generalized velocities for 32
in-between query points. They end at the release times estimated by GPR. (Top
right) Training target positions (stars) and the in-between query points (circles).
(Bottom right) The generalized velocities (thick black lines) for query point
q = [2.95, 1.35] and the velocities of nearby training trajectories that were
used for generalization. Our approach preserves the trends.

on a finer grid than for training (2 cm), and the corresponding
DMPs were calculated using the proposed generalization ap-
proach. The release times were also estimated by GPR. During
execution, the ball was detached from the hand at the estimated
release time. Using the position and velocity at release time, we
could calculate where the ball would land using (20).

Fig. 10 depicts the velocities of the most coarsely sampled
training movements and their generalization. It can be seen
that the generalized velocities and release times are similar to
the training velocities and release times. This is confirmed in
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Fig. 11. Validation-set error as a function of the bandwidth parameter c defined
in (15). The curve with stars shows the average difference (18) between the
synthesized trajectories and validation trajectories, and the curve with pluses
shows the error of the synthesized ball throws. They have similar minima.

Table III, which shows that we can generate throws to any target
within the training space with high accuracy. Even when the
training targets were distributed with the spacing of 0.5 m, we
could achieve the average accuracy of 2.0 cm for the inner train-
ing area where a sufficient number of example movements are
available. The inner training area was defined similarly as in
Fig. 3, with the width of the border area being equal to the spac-
ing between the example query points. The error dropped to
0.13 cm for training targets distributed with the spacing of 12.5
cm. Thus, we can say that our approach produces throws with re-
spectable accuracy, even when the training examples are sparse,
and that the accuracy improves with more densely distributed
training data. These results also show that the accuracy is higher
when a more advanced integration technique such as Adams–
Bashforth–Moulton method [54] is used to integrate the system
(24)–(26), shown later. Errors were significantly larger when
we applied the simpler Euler’s method. While the generalized
DMPs approximate the desired trajectories and their dynamics
with high precision, care must be taken when integrating the
generalized DMPs to reproduce this accuracy, which is impor-
tant in tasks such as ball throwing.

We also tested the automatic calculation of the bandwidth
parameter c of (15) for the locally weighted regression using
the validation-set-error method. As can be seen in Fig. 11, the
criterion has two local minima. The accuracy of the results
was slightly better with the larger c, but similar accuracy and
faster computational times could be achieved with the smaller
value of c. Note that the minima are very similar if we evaluate
the reproduction accuracy of the synthesized motion or if we
measure the accuracy of throwing. This fact is important because
the former does not require new experiments with the robot,
whereas the latter can only be calculated if the robot performs
new throws. This makes the second approach impractical for
real-world training.

E. Real-World Ball Throwing

To test real throwing, we recorded 20 throwing trajectories,
which were manually trained for different targets, and mea-
sured where the ball landed for each of these trajectories. We

Fig. 12. Accuracy of real throwing. The stars are the training targets while the
dots show the input query points for generalization. For evaluation purposes,
the robot executed three throws at each target, and we calculated the average
throwing error from the desired target (query point).

Fig. 13. (Top left) Library of example Fig. 8 trajectories in Cartesian space.
(Top right) Frequencies of example movements in x and y direction. (Bottom
left) Trajectories of joint 1 of the 2R planar robot. (Bottom right) Trajectories
of joint 2 of the 2R planar robot.

Fig. 14. Mean error of movement generalization over the entire scope of the
library of example movements estimated with the step of 1 cm.

used three of the total seven degrees of freedom of PA-10 robot
to realize robotic throwing. A coaching process similar to the
one described in [55] was applied to accumulate the training
data. Note that instead of using the actually executed move-
ments as training data for generalization, it was better to use the
commanded trajectories. In this way, any discrepancies between
the commanded and actually executed trajectories can be taken
into account by the generalization process. In addition, the com-
manded trajectories are smoother. Unlike in simulations, here,
we did not need to consider the release times because the re-
lease times are implicitly encoded in the arm trajectories. In our
experiments, the ball was held only loosely by the gripper. It
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Fig. 15. Example periodic trajectories in Cartesian space. The blue curves show the training input, and the red curves show the estimated periodic trajectories.
To transform the demonstrated screen trajectories into Cartesian space, the values have to be multiplied by 0.2 m. All final estimated training trajectories are in the
same plot in the top-right image. The frequencies are in the bottom-right plot.

was detached from the hand due to the dynamics of motion.
The repeatability of throws was about 2–3 cm; hence, this is
the best accuracy achievable by learning. Fig. 12 shows that we
can obtain accuracy of about 2–10 cm for the throws within the
inner training area, which is quite good when we consider the
repeatability of the robot and that the spacing between training
throws was about 0.5 m. The accuracy needed to get the ball into
the basket was within few centimeters. As expected, the robot
performed worse for the targets at the edge of the training area,
where less training data are available, and the precision is lower
(see Fig. 12 and the attached video discrete-throwing.mov, in
which the robot misses the last three throws into a basket placed
at the edge of the training area).

F. Simulated Periodic Pattern Study

Similarly to our analysis, in the case of discrete movements,
we conducted a simulation experiment to examine how well we
can generalize periodic Cartesian trajectories of a robot end-
effector. Just like in the simulated reaching study, we used a
planar 2R robot for simulation.

As an example periodic motion, we chose a Cartesian figure-
8 trajectory with a varying amplitude and frequency. Several
reasons speak for this, namely we can analytically generate a
signal with an arbitrary amplitude for comparison and the mo-
tion frequencies of the two separate dimensions in Cartesian
space are different. While the primary aim of the generalization
algorithm is to produce DMPs for movements that cannot be
attained by simple modulation, for the purpose of evaluation,
this section uses an example that can be easily attained by mod-
ulating the amplitude-control parameter of the periodic DMP.
The next section gives an example where generalization could
not be achieved by simple modulation.

A set of example figure-8s in Cartesian space and the tra-
jectories in joint space is depicted in Fig. 13. Cartesian-space
trajectories are distributed evenly from the smallest trajectory
at x = 0.3 + 0.2 cos(Ωt) m and y = 0.4 + 0.1 sin(2Ωt) m to

the largest at y = 0.4 + 0.55 sin(2Ωt) m with a step of 5 cm (x
does not change). Ten sampled joint-space movements are used
to form the example library.

Using the amplitude in the y dimension as a query-point pa-
rameter, we generalized the training-joint trajectories, i.e., we
calculated the parameters of a periodic DMP as described in Sec-
tion II-C and D. Different frequencies in each dimension of the
example demonstration movements (see Fig. 13) show that we
can successfully estimate the periodic movements onto a single
period. Once the new movement is generated, frequencies can
easily be modulated with the periodic DMP frequency-control
parameter, just like it is done in a standard DMP approach
(see [44] for details).

Fig. 14 shows the mean error of movement generalization over
the entire scope of the example library. As before, the distance
of the generalized trajectory from the analytically computed
trajectory increases at the edge of the database as there, example
movements are available only on one side of the query point.
The accuracy of generalization is slightly decreasing, which is
the result of the increasing amplitude.

G. Real-World Drumming Experiment

In the final experiment, we applied the proposed approach
to realize drumming on humanoid robot CB-i. Of the total 39
degrees of freedom, we used all seven of the right arm for
the execution of the movement. To demonstrate generaliza-
tion, we trained the robot to perform one-handed drumming
on a drum and a cymbal, where the cymbal was mounted
at different heights. Such drum placements—although with
more drums—are common for drummers. Fig. 15 and the at-
tached video periodic-examples.mov show a set of example
periodic trajectories in Cartesian space, which were recorded
with a sampling rate of 100 Hz. The trajectories were demon-
strated with a mouse on a screen, scaled to Cartesian space,
and mapped onto the robot’s joint angles via inverse kine-
matics in real time. The trainer was modifying his motion
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Fig. 16. Image sequence showing the drumming at two different heights. The cymbal is higher in the top row.

Fig. 17. The result of generalization for four randomly chosen query points.
The figure shows the generalized trajectories in blue. The training trajectories
associated with query points just above (red) and below (green) the current query
point are also shown. Among the ten example trajectories, these trajectories
influenced the generalization process most.

based on the real-time visual feedback coming from the robot.
The drum was placed at −0.162 m. For training, we mounted
the cymbal at ten different heights (−0.177,−0.149,−0.091,
−0.068, −0.049−0.020, 0.017, 0.054, 0.079, and 0.117 m).
Thus, the maximum height difference was about 30 cm.

Fig. 16 and the attached videos periodic-generalized1.mov
and periodic-generalized2.mov show the ability of the sys-
tem to generalize the trained periodic trajectories. The resulting
movements cannot be attained trough simple modulation of a
periodic DMP because standard modulation techniques do not
allow the robot to modify the movement on only one side. The
proposed approach can automatically generate the appropriate
movements from the collected data. The query point for gen-
eralization is the height difference between the drum and the
cymbal. While the height difference could be estimated by vi-
sion, we simplified this experiment by measuring the difference
with a ruler and providing it to the algorithm.

Fig. 17 presents the results of generalization for four ran-
domly selected query points. The figure shows the generalized
periodic trajectories and the trajectories associated with query

points above and below the current query point. These trajecto-
ries were used for generalization. Due to the limited support of
the weighting kernel from (13), the generalized trajectories are
generated only from the four plotted example trajectories. As the
trajectories were generated by human demonstrations, they are
quite different among themselves. Nevertheless, the algorithm
was able to generate trajectories similar to the example trajecto-
ries. If the demonstrations were more uniform, the generalized
trajectories would be as well.

IV. FINAL DISCUSSION AND CONCLUSION

Our experiments show that the proposed approach is able to
generalize the training data to new situations within the sampled
training space. The computational time required for generaliza-
tion compared to the computational time for standard one-shot
learning of DMPs increases only linearly with a number of train-
ing trajectories that are taken into account by local weighting.
The relatively low computational complexity of the method en-
abled us to compute new control policies directly from the sam-
pled data online. In this way, we avoid the pitfalls associated with
the projection of the training data into lower dimensional param-
eter spaces (also called latent spaces), which can lead to over-
smoothing and, therefore, losing important details of the task.

In contrast to reinforcement learning (RL), where a robot ac-
tively explores the solution space to adapt its movements to new
situations, we focused on generalization to new situations from
the available data. The two methodologies are complementary;
RL techniques can be used to provide initial samples for our
trajectory libraries. On the other hand, our method can be used
to provide a good initial approximation for RL (thus speeding up
the convergence) if higher accuracy than what can be achieved
by the proposed approach is required.

Our method is appropriate if the example trajectories
smoothly transition as a function of query points, as defined in
(2). Otherwise, nearby data do not provide information about the
movement associated with the new query point q. A more com-
plex relationship might require a larger number of training tra-
jectories. It is, however, intuitive that this relationship is smooth
in real-world problems because it is unlikely that a totally
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different strategy would be used to solve a task in different
but similar situations. Instead, the movement trajectories are
usually adjusted when solving the task at nearby query points.
Our experiments show that even though the available training
sets were not large in real-world test, we could successfully
generalize and achieve high performance in several tasks that
are relevant for robotics.

The proposed generalization process synthesizes DMPs in a
standard form, and thus, we can still exploit all of the advan-
tages of standard DMPs at execution time, like, for example,
modulation of the time evolution of the phase by modifying
(24) [20], avoiding the joint limits by modifying (22) [44], etc.
We have also demonstrated in Section III-C that the developed
system can be used in an active feedback loop by modifying the
attractor point of a DMP online, with GPR correcting some of
the modeling errors causing uncertainties in the 3-D vision data.

There exist tasks in which example movements do not tran-
sition smoothly as a function of query points. Consider, for
example, reaching movements that need to avoid an obstacle
before arriving at the final destination. If there are two sets of
example movements, each avoiding the obstacle from a differ-
ent side, then example movements that avoid the obstacle from
different sides should not be used for generalization simultane-
ously. The proposed approach could still be used, but it would
need to be supplemented by a suitable clustering procedure that
determines sets of trajectories suitable for generalization. Issues
like clustering of example movements and the identification of
motor primitives are important for cognitive robots that should
gradually increase their competence through seamless learning.
While we did not consider such issues in this paper, our ap-
proach provides a methodology to generalize the appropriately
selected training trajectories in a natural way, thus providing an
important building block for a cognitive robot.

APPENDIX A

CONTROL POLICIES AS DYNAMIC SYSTEMS

Here, we briefly explain the theoretical fundamentals of the
motor representation developed by Ijspeert et al. [28], [29].
These authors proposed to describe a control policy by a set
of nonlinear differential equations with a well-defined attractor
dynamics. Here the most current formulation as outlined in
[20] is used. For a single degree of freedom denoted by y,
which can either be one of the internal joint angles or one of
the external task-space coordinates, the following system of
linear differential equations with constant coefficients has been
proposed as a basis for motion specification:

τ ż = αz (βz (g − y) − z) (21)

τ ẏ = z. (22)

Provided that the parameters αz , βz , and τ > 0 are selected
appropriately, e.g., αz = 4βz , this system has a unique attractor
point at y = g, z = 0.

Differential equations (21)–(22) ensure that y converges to
g and can therefore be used to realize discrete point-to-point
movements. To increase a rather limited set of trajectories that

can be encoded by (21) and (22) and thus enable the approxi-
mation of general point-to-point movements, (21) needs to be
modified. In the case of discrete movements, one can add a
linear combination of radial-basis functions to (21) [20]3

f(x) =
∑N

i=1 wiΨi(x)∑N
i=1 Ψi(x)

x, Ψi(x) = exp
(
−hi (x − ci)

2
)
(23)

where ci are the centers of radial basis function distributed along
the trajectory, and hi > 0. A phase variable x is used in (23)
instead of time to make the dependency of f on time more
implicit. Its dynamics can be defined by

τ ẋ = −αxx (24)

with initial value x(0) = 1. A solution to (24) is given by
exp (−αxt/τ), thus x tends to 0 as time increases. As shown
in [20], the appealing property of using the phase variable x
instead of explicit time is that by appropriately modifying (24),
we can, for example, stop the evolution of time to account for
perturbations during trajectory execution. This results in the
following system of differential equations:

τ ż = αz (βz (g − y) − z) + f(x) (25)

τ ẏ = z (26)

which can be used to approximate discrete movements of various
shapes. Since x tends to zero, the influence of the nonlinear term
f(x) decreases with time and system (25) and (26) converges
to [0, g]T , just like the system (21) and (22). The control policy
specified by variable y defines what is called DMP.

In the case of periodic movements, the following linear com-
bination of periodic functions can be used to change the dynam-
ics of the basic second-order system [20]:

f(φ) =
∑N

i=1 wiΓi(φ)∑N
i=1 Γi(φ)

r, Γi(φ) = exp (hi (cos (φ − ci) − 1))

(27)
where r is the amplitude of the oscillator, and hi > 0. Writing
τ = 1/Ω, (25) and (26) are replaced by

ż = Ω(αz (βz (g − y) − z) + f(φ)) (28)

ẏ = Ωz. (29)

The phase variable φ has been introduced in this case to avoid
the explicit dependency on time. The phase is assumed to move
with constant speed

φ̇ = Ω (30)

where Ω is the frequency of oscillation.
DMPs have been designed to provide a representation that

enables accurate encoding of the desired trajectories and at the
same time permit the modulation of different properties of the
encoded trajectories. In this context, the shape parameters wi

3f defined in [20] is scaled by g − y0 , i.e., f (x) = [
∑N

i=1 wiΨi (x)/∑N

i=1 Ψi (x)]x(g − y0 ), y0 = y(0). Thus, when the attractor point g
changes, the encoded movement gets scaled. We omit this scaling factor be-
cause we are not interested in automatic scaling, which is achieved differently
in our approach. If g is kept constant, the scaling factor has no effect.
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are determined so that the robot can accurately follow the de-
sired trajectory by integrating (24)–(26) or (28)–(30). The other
parameters are used for modulation. For example, by changing
g, we can adjust the final destination of a discrete movement,
while τ can be adjusted to modulate its velocity. Similarly, Ω
can be changed to modulate the frequency of oscillation in case
of periodic movements.

APPENDIX B

ADAPTIVE FREQUENCY OSCILLATORS

The frequency of oscillation is not directly observable in the
data. To estimate the frequency, Righetti et al. [43] suggested to
replace the constant-speed assumption (30) by a system

φ̇i = Ωi − Ke (t) sin (φi) (31)

Ω̇i = −Ke (t) sin (φi) (32)

α̇i = η cos (φi) e (t) (33)

where e (t) = yd(t) − ŷ(t), and ŷ(t) =
∑L

i=1 αi cos (φi). Note
that if e (t) = 0, the system (31)–(33) becomes equivalent to
(30). It has been shown that by integrating this system, the
frequencies Ωi contained in the observed motion trajectory can
be estimated. The most significant frequency is selected as the
base or fundamental frequency Ω for the DMP (see [44] for the
integration of adaptive frequency oscillators with DMPs).

APPENDIX C

GAUSSIAN PROCESS REGRESSION

A Gaussian process is defined as

g(q) ∼ GP (m(q), k(q,q′)) (34)

where m(q) = E(g(q)) is the mean function, and k(q,q′) =
E((g(q) − m(q))(g(q′) − m(q′))) is the covariance function
of the process. Let us assume that we have a set of noisy
observations {(qk , yk )|k = 1, . . . , M}, yk = g(qk ) + ε, ε ∼
N (0, σ2

n ). Subtracting the mean from the training data, we can
further assume that m(q) = 0. If we are given a set of query
points g(q∗), then the joint distribution of all outputs is given as[

y
y∗

]
∼ N

(
0,

[
K(Q,Q) + σ2

nI K(Q,Q∗)
K(Q∗,Q) K(Q∗,Q∗)

])
(35)

where Q, Q∗, y, y∗, respectively, combine all inputs and out-
puts, and K(·, ·) are the associated joint covariance matrices
calculated according to (34). It can be shown [42] that the ex-
pected value ȳ∗ is given by

ȳ∗ = E(y∗|Q,y,Q∗) = K(Q∗,Q)[K(Q,Q) + σ2
nI]−1y

(36)
with the following estimate for the covariance of the prediction:

cov(g∗) = K(Q∗,Q∗)

− K(Q∗,Q)[K(Q,Q) + σ2
nI]−1K(Q,Q∗).

One commonly used covariance function is

k(q,q′) = σ2
f

n∑
i=1

exp
(
−1

2
(qi − q′i)

2

l2i

)
(37)

which results in a Bayesian regression model with an infinite
number of basis functions. Here, n denotes the dimension of the
query-point space. See [42] for more details.
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