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Abstract—This paper proposes a real-time balance control
technique that can be implemented to bipedal robots (exoskele-
tons, humanoids) whose ankle joints are powered via variable
physical stiffness actuators. To achieve active balancing, an
abstracted biped model, torsional spring-loaded flywheel, is uti-
lized to capture approximated angular momentum and physical
stiffness, which are of importance in postural balancing. In
particular, this model enables us to describe the mathematical
relation between Zero Moment Point and physical stiffness. The
exploitation of variable physical stiffness leads to the following
contributions: i) Variable physical stiffness property is embodied
in a legged robot control task, for the first time in the literature
to the authors’ knowledge. ii) Through experimental studies
conducted with our bipedal exoskeleton, the advantages of
variable physical stiffness strategy are demonstrated with respect
to the optimal constant stiffness strategy. The results indicate that
the variable stiffness strategy provides more favorable results
in terms of external disturbance dissipation, mechanical power
reduction, and ZMP/CoM position regulation.

Index Terms—balance control, exoskeleton, variable physical
stiffness, ankle stiffness, zero moment point, push recovery.

I. INTRODUCTION

THE advent of the first active exoskeleton reported in [1]
led the way to several key developments in the field of

lower extremity life support systems. Applications vary from
robot-aided physiotherapy [2] and power amplification [3] to
walking support for paraplegics [4]–[6] and gait rehabilitation
[7]. In [8], Dollar and Herr reviewed a great majority of these
devices in terms of design, control, and implementation.

Orienting our research objective within this frame, we
developed a high-power, self-balancing, passively compliant
and wearable bipedal exoskeleton for robot-aided lower body
rehabilitation applications. In particular, the ankle joints of our
robot possess the variable physical stiffness feature, which, in
turn, effectively allowed the synthesis of a novel balance con-
trol strategy to cope with unperceived external disturbances.
Therefore, this paper aims to disclose this aspect of our work;
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the variable physical stiffness property is exploited in the
legged robot balancing task for the first time in the literature,
to the authors’ knowledge.

This study chiefly focuses on the efficacy of the variable
physical stiffness modulation to address the legged robot
balance control task. The lower body exoskeleton used in our
experiments was considered as a bipedal robot without any
human user, so as to explicitly examine the sole contribution of
the controller. This is due to the fact that humans inadvertently
modulate their own muscle impedance characteristics when
the human-robot coupled system is perturbed, increasing the
complexity of the evaluation. With this in mind, the stability
of the human-robot coupled system will be investigated in a
future work.

The paper is organized as follows. The current section
continues with the discussion on the related works and the
contributions presented in this paper. The mechatronic hard-
ware of our bipedal exoskeleton is presented in section II, with
a special emphasis on its actuation principle. Variable physical
ankle stiffness-based balance recovery control is disclosed in
section III with related numeric analyses. Experiment results
are discussed in section IV in which a comparison is provided.
The paper is concluded in section V by stating the end results
and addressing the future direction.

A. Related Works

Incorporation of compliance is of importance for almost
all multibody legged systems when considering dependability,
intrinsic stability, inherent safety, energy management, and
environmental adaptability [9], [10]. In particular, software-
controlled active compliance schemes outperformed conven-
tional feedback controllers in handling unperceived environ-
mental conditions and external disturbances [6], [11]–[13].
While this strategy is useful in its own right, it may not
be considered inherently safe and energetically favorable due
to reflected inertia, high intrinsic impedance, and delays in
sensory response and control cycle. [10].

Actuators with elastic components are developed to in-
troduce physical compliance for enhanced human-robot-
environment interaction capabilities [14], [15]. On one hand,
this actuation principle is effectively used in humanoids and
exoskeletons, such as, in balance recovery [16], efficient
locomotion [17], and assistive control [18]. On the other hand,
physical stiffness characteristics of these actuators are often
nonadjustable; thus, enforcing the additional active compliance
control schemes to modulate the output impedance. This
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further requires modulations on the task-specific position or
torque inputs in a way so as to emulate the desired impedance
characteristics [6], [11], [12], causing inevitable deviations
from the position or torque references.

The central nervous system in legged creatures adaptively
controls the motion by means of muscle impedance regulation
[19]. This allows them to stabilize their motion when subject
to disturbances [20], [21], even within the absence of neural
feedback [22]. In order to mimic such advanced behavior
in robotic systems, researchers developed VIAs (Variable
Impedance Actuator) to decouple the apparent output stiffness
and actuator torque [23]–[26]. On this matter, VIAs with elec-
trical actuators often require complicated mechanical design,
and their implementation to multi-DoF (Degrees of Freedom)
systems is an ongoing process due to their size and weight.

Akin to their biological counterparts, PAMs (Pneumatic
Artificial Muscle) possess superior characteristics as the main
power source. They have great power-to-weight ratios; can
drive robot joints without any high-friction mechanical trans-
mission gears. Their implementation to robotic systems is
rather simple in terms of mechanical design. More importantly,
they act as a simultaneous torque and stiffness generator when
antagonistically driven. While PAMs have some disadvantages
such as constant need of pressurized air, they were imple-
mented to exoskeleton devices [27]–[29].

Despite the fact that VIAs become increasingly available
[26], the variable physical stiffness feature has not been
thoroughly addressed in legged robot control, particularly, for
real-time balance control tasks. There are ongoing efforts in
embedding VIAs to legged systems, e.g., [25]; however, a
control algorithm that exploits the concept of variable physical
stiffness has not been proposed in the legged robotics literature.
Therefore, the main objective of this paper is to make a
contribution in this direction.

B. Novelty
As discussed in [19]–[21], adaptive motion control is

provided by means of mechanical impedance regulation in
biological muscles. Especially, ankle stiffness modulation is
observed to be a key factor in human balancing [21], [30]–
[32]. Motivated by the results in these studies, a real-time
balance control method is developed for our PAM-powered
bipedal exoskeleton which makes use of the variable physical
stiffness at the ankle joints to cope with unperceived external
disturbances.

To extract the mathematical relation between the dynamic
balance criterion ZMP (Zero Moment Point) and variable
physical stiffness, a torsional spring-loaded flywheel model
is constructed by appropriately combining the concepts intro-
duced in [12] and [33] . In doing so, balance control task, i.e.,
ZMP regulation, can be interpreted in terms of ankle joint
stiffness modulation. In addition, the model is able to capture
the abstracted angular momentum, which is of importance in
postural balancing.

In developing the online balance controller, we offer two
contributions:

i) Variable physical stiffness property is exploited for the
first time in the context of legged robot control, to the authors’
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Fig. 1. a) Joint frames of XoR in the sagittal plane. b) The actual robot,
XoR, while being worn by an able-bodied. c) Multi-DoF representation of
XoR in the sagittal plane. Knee and ankle joints are passively compliant. The
arrow on the ankle joint indicates the stiffness variability.
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Fig. 2. The PAM-powered exoskeleton robot exhibits its position control
functionality by performing self-balanced squatting motion with a dummy
mannequin inside [34].

knowledge. Software-controlled actively compliant robots [6],
[7], [11], [12], and legged systems with nonadjustable physical
stiffness [16]–[18] demonstrated favorable locomotion control
performances; yet, the utilization of variable physical stiffness
has not been investigated in the related literature. This paper
offers the first implementation of variable physical stiffness,
with a special emphasis on its efficacy for the real-time balance
control of a bipedal system.

ii) The proposed balancing strategy is compared to optimal
constant stiffness strategy [16] by conducting experiments on
an actual bipedal exoskeleton robot. Results are compared in
terms of external disturbance dissipation response, ZMP/CoM
(Center of Mass) position regulation, mechanical power reduc-
tion, and air mass consumption.

II. A SOFT BIPEDAL EXOSKELETON: XOR

In order to conduct research on robot-aided rehabilitation,
sensorimotor learning and neurophysiology, a soft bipedal
exoskeleton, named XoR, was developed at the BRI - Compu-
tational Neuroscience Laboratories of ATR, [29]. Each XoR
leg has 3 active DoFs that actuate hip, knee, and ankle
joints through flexion/extension. This configuration allows the
robot to demonstrate self-balancing and bipedal squatting with
no support, nor tethering mechanism; though its motion is
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TABLE I
MECHANICAL SPECIFICATIONS OF XOR

Hip - Knee length: 39 [cm]
Knee - Ankle length: 38 [cm]
Ankle - sole length: 14 [cm]

Total Weight 22.2 [kg]

constrained in the sagittal plane. Fig. 1 shows the physical
system and its joint frames. Fig. 2 displays three snapshots
from the self-balanced squatting experiments with a dummy
mannequin. Mechanical specifications of the robot are con-
cisely listed in Table I.

The current version of XoR was chiefly constructed to
conduct tasks in the sagittal plane, such as, sit-down and
stand-up rehabilitation [2], squatting and active self-balancing.
Therefore, this work primarily focuses on planar motions,
in which the legs are moved in a synchronized manner. As
a consequence, ankle joints are required to output greater
torque while hip joints demand the minimum amount of torque
output, since no stepping motion is involved in the target tasks.

With this in mind, knee and ankle joints are powered
via PAM actuators, due to their high power-to-weight ratio
and physical compliance [26]. Ankle joints are driven via
two antagonistically coupled PAMs (Festo MAS-10) through
flexion/extension, while knee joints are powered via single
PAM units (Festo MAS-40) through flexion. Hip joints are
actuated via low power motors (Maxon, EC-4 pole). The robot
also has hip extensors; however, they are disabled in this
study. This hybrid actuation strategy is implemented to comply
with the dimensional and weight requirements, in addition to
addressing physical compliance and high torque output at the
knee and ankle joints.

Ankle joints, powered via antagonistic PAM couples, en-
ables us to control the position (q3) and the physical stiffness
(k3) in a simultaneous fashion. The details regarding the simul-
taneous position and variable stiffness control is provided in
[34]. Knee joints allow the reliable position control; however,
its stiffness (k2) change depending on the joint state. Utilizing
the forward stiffness model and knee torque measurement, we
can estimate the changes in k2 [34]. Hip joints, actuated via
low power motors, only enable the position (q1) control. The
stiffness of hip joints is considered sufficiently big, since their
physical compliance is relatively insignificant.

In the light of the above stated facts, we model the robot as a
4-link 3-DoF system as displayed in Fig. 1(c), in which ankle
joints are driven via variable stiffness actuators, knee joints
driven are via passively compliant actuators, and hip joints are
driven via stiff-by-nature actuators. Since both legs move in a
synchronized manner, the ankle joint stiffness in this model is
equivalently distributed to the left and right ankle joints of the
robot. This approach was confirmed to be feasible in practice
for a passively compliant humanoid [17].

III. BALANCE CONTROL STRATEGY

In order to avoid complex and computationally heavy
algorithms, abstracted models with reduced dimensionality
are often used in a way so as to capture the important
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Fig. 3. XoR is modeled as a torsional spring-loaded flywheel pendulum. It
can characterize both approximated angular momentum and physical stiffness.
Flywheel disk orients in an identical manner with the pendulum. Any
disturbance applied on the robot may be represented by d that acts along
the α axis. Reaction force Fn can be decomposed to Fnx and Fnz .

characteristics of multi-body robots for a given task [12],
[16], [33]. In line with this strategy, a torsional spring-loaded
flywheel model, illustrated in Fig. 3, is utilized to combine
the concepts presented in [12] and [33]. In this approach, a
flywheel disk with a constant rotational inertia of If and a total
mass of m is considered to emulate the robot. Flywheel mass
is condensed at the robot’s CoM position and it is in contact
with the floor through a telescopic leg and a rectangular foot.
Friction between the foot and the floor is sufficient to prevent
foot slips. As the generalized coordinates, leg length r, and
angular position with the vertical z-axis, α, are assigned. A
torsional spring, with a varying stiffness of kf , connects the
leg to the vertical z-axis. When α=α0, the spring is in the
rest state. The parameter d represents the overall disturbance
torque acting on the robot CoM, due to external pushes, and
as well as due to modeling uncertainties.

The model offers two beneficial properties. i) Unlike point
mass pendulums, it can encapsulate the approximated angular
momentum, which is crucial in describing the postural equi-
librium. Though the rotational inertia of the robot is joint state
dependent (composite rigid body inertia), one can conjecture
a constant value by considering the target motion range and
CAD data [33]. ii) It can embody the physical stiffness of
the robot with the presence of torsional spring. To this end,
a mapping between the torsional spring stiffness (kf ) and
joint space stiffness (k2, k3) will be addressed in the next
subsection.

A. Equations of Motion

To derive equations of motion, Lagrangian mechanics is
used. r and α are the generalized coordinates.
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Tfm =
1

2
m

(
ṙ2 + r2α̇2

)
+

1

2
If α̇

2 (1)

Ufm =
1

2
kf (α− α0)

2
+mgr cosα (2)

Dfm =
1

2
bf α̇

2 (3)

In these equations, Tfm and Ufm stand for total kinetic
energy and total potential energy. Dfm is Rayleigh’s dis-
sipation function which is used to embody the frictional
and other damping effects through α. The related damping
coefficient is bf . Calculating the Lagrangian of the system via
Lfm = Tfm − Ufm, the equations of motion can be yielded
as follows.

d

dt

∂Lfm

∂ṙ
− ∂Lfm

∂r
+
∂Dfm

∂ṙ
= Fn (4)

d

dt

∂Lfm

∂α̇
− ∂Lfm

∂α
+
∂Dfm

∂α̇
= Mn (5)

Eqs. (4) and (5) respectively stand for translational and
rotational motion. Fn and Mn are reaction force and moment
acting on the system, see Fig. 3. As described earlier, the
friction between the foot and floor is considered to be sufficient
to prevent foot slips; therefore, we give our full attention to
postural balance which can be described using (5). In this
case, reaction moment can be expressed in terms of x-axis
ZMP, (Xzmp), and vertical reaction force, (Fnz) [11].

Mn = FnzXzmp + d (6)

In (6), d stands for the resultant external moment that may
occur due to disturbances. Plugging (6) into (5), the equation
of motion is yielded.

FnzXzmp + d = (mr2 + If )α̈+ 2mrṙα̇+ kf (α− α0)

+ bf α̇−mgr sinα (7)

At the right hand side of (7), the rate change of angular
momentum that is associated with the rotational inertia is
characterized via If α̈ term. Physical stiffness is captured with
kf (α− α0) term.

B. From Flywheel Stiffness to Ankle Stiffness: The Mapping

While (7) reveals the mathematical relation between the
ZMP (Xzmp) and flywheel stiffness (kf ) in addition to other
terms, it is still required to construct a mapping from flywheel
stiffness (kf ) to ankle joint stiffness (k3). To this end, the
following equation is used.

kf = (Jrt(q)
T )+Kr(Jrt(q))

+ (8)

In (8), the superscript + stands for the Moore-Penrose
pseudo inverse. Recall that the model we use includes only a
single torsional spring through α, with a time-varying stiffness
parameter kf ; see Fig. 3. There is no translational spring
through r. Hence, the stiffness matrix of the model has only
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Fig. 4. Our ZMP-based real-time balance controller is based on the
variable physical ankle stiffness modulation. Superscripts cmd and ref
denote command (controller output) and reference (desired) signals. Position
and stiffness control of PAMs [34] is not included in this illustration. The
disturbance d represents the resultant external moment that may occur due to
any kind of disturbance, e.g., external pushes, modeling uncertainties, etc.

one element: kf . Kr in (8) is a matrix whose diagonal
elements store the stiffness values of our robot (k2, k3). Note
that hip joints do not include physical compliance, thus they
are not considered in the mapping as explained in section
II. Joint state-dependent Jrt(q) is the Jacobian matrix that
kinematically maps α to joint coordinates.

Jrt(q) =

[
∂α

∂q2

∂α

∂q3

]
(9)

In order to extract the kinematic relation between α and
joint coordinates, one can utilize coordinate transformation
from polar to Cartesian coordinates and forward kinematics.
With (9) at one hand, we can solve (8) to obtain k3 in terms
of k2 and kf .

k3 =
kf

(
J2
rt1 + J2

rt2

)2 − k2J2
rt1

J2
rt2

(10)

Jrt1 and Jrt2 are the first and second elements of Jrt(q)
and they can be calculated using joint angle measurements.
Variations in k2 can be estimated using the PAM model
parameters and torque measurements [34]. Finally, one can
obtain k3 via (10) for a given kf , together with the estimated
k2, so as to achieve the mapping kf 7→ k3.

C. Stable ZMP Feedback Control via Varying Ankle Stiffness

Fig. 4 displays the ZMP feedback control strategy. In order
to embody ZMP feedback via the utilization of varying ankle
stiffness, we primarily define τcp which includes the rest of
the terms that appear due to inertia, gravity and damping.

τcp = (mr2 + If )α̈+ 2mrṙα̇+ bf α̇−mgr sinα (11)

If we compute τcp using the actual r and α, along with
the required time derivatives, and add it up as a compensation
block as shown in Fig. 4, we can hypothetically cancel out
these terms. On this matter, any modeling and parameter
uncertainty would contribute to the disturbance d, which
represents the resultant disturbance, including external pushes.
Note that actual r and and α can be computed using joint angle
measurements. α̈ is obtained with approximate differentiation.
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Keeping this in mind, the desired flywheel stiffness, kdesf ,
is designed as follows, see Fig. 4.

kdesf =
FnzX

cmd
zmp − τcp
α− α0

(12)

Having computed kdesf via (12), we utilize (10) to obtain the
corresponding ankle stiffness. The corresponding ankle stiff-
ness is realized in accordance with the simultaneous position
and variable stiffness controller that is reported in [34].

In order to prove the stability of the controller disclosed in
Fig. 4, we use Lyapunov’s theory. First, placing (12) into (7)
yields the following.

FnzXzmp + d− FnzX
cmd
zmp = 0 (13)

The command signal Xcmd
zmp is constructed via a PD con-

troller with feedforward, see Fig. 4.

Xcmd
zmp = Xref

zmp +Kpez +Kdėz (14)

Positive PD gains, Kp and Kd, are assigned by respecting
the Hurwitz criterion. ez = ez(t) is ZMP error; ez = Xref

zmp−
Xzmp. Combining (13) and (14) results as follows.

ėz =
d

FnzKd
− 1 +Kp

Kd
ez (15)

The Lyapunov function V (ez) and its time derivative along
system trajectories, (15), are derived as below.

V (ez) =
1

2
εe2z (16)

V̇ (ez) = εez ėz = −ε1 +Kp

Kd
e2z + ε

d

FnzKd
ez (17)

In (16)-(17), ε is a sufficiently small number. Considering
the Young’s inequality argument, the following condition is
met for a sufficiently small coefficient c1 > 0 and a sufficiently
large coefficient c2 > 0 [35],

V̇ (ez) ≤ −c1 ‖ez‖2 + c2 ‖δ(t)‖2 , (18)

where δ(t) = ε d
FnzKd

ez . ‖·‖ denotes the Euclidean norm. It
follows from [36] that the system (13) is Input to State Stable
(ISS) with respect to time-varying disturbance δ(t). This also
indicates a notion of robustness for the system (13) through the
characterization of the ISS concept. For example, the following
expression (definition of ISS) holds true for some K function
Υ and for some KL function Ω [36].

‖ez(t)‖ ≤ Ω(‖ez(0)‖ , t) + Υ(‖δ(t)‖∞) (19)

In (19), ‖·‖∞ denotes the infinity norm of the signal ‖·(t)‖
over time. Intuitively speaking, the definition of ISS requires
that for t large, the state must be bounded by some function
of the amplitude of the inputs. This to say the norm of the
state eventually enters in a ball of radius Υ(‖δ(t)‖∞).
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Fig. 5. Numerical simulations were conducted using the torsional spring-
loaded flywheel model to compare the proposed and the optimal constant
stiffness strategies. 3 distinct external disturbances are implemented to the
flywheel CoM. a) Phase diagram, b) Ankle stiffness.

D. Numerical Simulation

In order to observe the differences regarding convergence
properties of the proposed balancing strategy with respect to
the optimal constant stiffness strategy [16], we ran numerical
simulations. In these simulations, disturbances with 3 distinct
amplitudes were horizontally implemented to the flywheel
CoM for a period of 10 [ms]: i) 50 [N], ii) 100 [N], iii)
150 [N]. Fig. 5 depicts the results in which purple and green
lines show phase diagrams and ankle stiffness variations for
the proposed balancing strategy and optimal constant stiffness
strategy, respectively.

Observing Fig. 5(a), the proposed strategy always converged
faster to the equilibrium, compared to the optimal constant
stiffness strategy. This was indeed expected, because, when
the stiffness was constant, the CoM needed to travel longer
to extend the deflection (α-α0), so as to cope with the
disturbance. In contrast, the proposed strategy dynamically
modulated the stiffness; therefore, the compensation torque
to handle the disturbance could be exerted with comparatively
less angular deflection. This allowed the CoM to travel less,
resulting in a more favorable balancing strategy as the CoM
deviated less from its desired path.

In addition, ankle stiffness appeared to decrease at the
time of impact to cope with the disturbance, see Fig. 5(b).
It decreased even more when the disturbance amplitude was
greater. This was an expected behavior as the disturbance
could be dissipated more effectively in higher intrinsic com-
pliance.

IV. EXPERIMENT RESULTS

A series experiments were conducted on the bipedal ex-
oskeleton XoR for the proof of concept evaluation. Two
experimental protocols were considered: 1) The robot was
balanced using the proposed method in which physical ankle
stiffness was modulated. This experiment protocol is tagged as
VSS. 2) The robot was balanced using the method reported in
[16], which allows the computation of the optimal constant
ankle stiffness by means of a cost function to optimally
minimize ZMP squared. This experiment protocol is tagged as
OCS. Using this method, the optimal constant ankle stiffness
was calculated as 58 [Nm/rad] for our robot.
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The following conditions kept the same in both protocols.
a) The CoM position reference was assigned as a quiet
standing state; r = r0 = 0.65 [m] and α = α0 = 4.8◦.
The method proposed in [34] was used for the position and
stiffness control of PAM-powered joints.
b) A pendulum with a tip mass of 4 [kg] and a cable length of
1.25 [m] was released towards the approximate robot CoM by
means of an external disturbance source. It was released from
an initial angular distance of 15◦ with zero initial velocity.
The pendulum tip mass struck the robot when the pendulum
angle is approximately 0◦.
c) The pendulum was set free 3 times in a successive manner,
with an equal amount of delay in between each hit.
d) Experiments were strictly conducted in 3-D. No tethering,
nor supporting mechanism was utilized. The robot also single-
handedly bore a bundle of pneumatic and electrical cables
attached to its pelvis from the back.

Fig. 6 displays the main results, where solid green and
purple lines depict the data collected from OCS and VSS,
respectively. Yellow hatched areas indicate the periods in
which the pendulum hits the robot to perturb its state, and
then the robot reacts to recover from that perturbation.

Horizontal reaction force measurements are provided in Fig.
6(a). This plot shows that the robot motion was disturbed
equally in each experiment protocol; see the circled reaction
force peaks. The difference is apparent during the recovery
stage. The robot was able to dissipate the disturbance when
the proposed balancing strategy was used. In the case of
VSS, The horizontal reaction force response stayed within the
band of ±24 [N], and settled relatively faster. In contrast, this
measurement varied between -50∼75 [N], in the case of OCS.

Fig. 6(b) depicts the physical ankle stiffness variations. As
stated previously, the optimal constant ankle stiffness was
computed as 58 [Nm/rad] for the case OCS. In the proposed
strategy, the ankle joint stiffness was modulated in accordance
with the balance control strategy disclosed in section III. When
the robot motion was perturbed via the pendulum hits, the
ankle stiffness showed a variance between 48∼58 [Nm/rad].
When there was no disturbance, it stayed within the vicinity
of the optimal constant stiffness. In order to maintain the
balance when disturbed, the higher intrinsic compliance is
of importance [10], [25]. By virtue of the decreased ankle
stiffness, the disturbance could be effectively dissipated.

ZMP error variations are presented in Fig. 6(c) for the
horizontal x-axis. For OCS and VSS, ZMP error varied be-
tween -4∼6 [cm] and -1∼2 [cm], respectively. As the proposed
method was able to dissipate the external disturbances, ZMP
error was well contained for the case of VSS. Compared to
the OCS case, peak-to-peak ZMP error was reduced for about
70%. That being said, the robot maintained dynamic balance
in both cases, as the ZMP error stayed within the support
polygon boundaries.

CoM position error, i.e., flywheel angle deflection plots
are given in Fig. 6(d). In the case of OCS, flywheel angle
deflection (α−α0) was the only physical quantity that supports
the dissipation of the external disturbance. This enforced the
CoM to travel more and caused it to deviate from its desired
path. In contrast, the proposed balance controller modulated
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Fig. 7. Phase diagrams through α axis. It is plotted for 3 successive
perturbations and the related recovery period. Compared to the OCS case, the
CoM converged faster to the quiet standing state when the proposed strategy
was employed.

the ankle stiffness in accordance with the ZMP feedback, so
as to dissipate the perturbation effectively. As a consequence,
CoM position error was contained well as the flywheel angle
deflected comparatively less.

Fig. 6(e) depicts the total mechanical power. Since the CoM
needed to travel less in the case of VSS, the peak-to-peak
mechanical power showed a 50% decrease, compared to the
OCS case. Hence, the mechanical power reduction appears
to be another advantage of using the proposed method for
balancing bipedal systems.

Air mass consumption variations are estimated using ideal
gas law and normalized with respect to maximum value; see
Fig. 6(f). Examining this figure, the system demanded 70%
more air mass in the case of VSS. The main reason behind
this increase is that the simultaneous position and stiffness
control utilizes the actuator redundancy in the antagonistic
architecture, which leads to more aggressive changes in PAM
pressure levels. While this negative result should be noted, the
increase in supply air is not inherent to this control strategy.
We discuss this aspect later in section V.

Fig. 7 illustrates the phase diagrams which were constructed
using the experiment data. These phase diagrams indicate
that the CoM converged to the equilibrium (quiet standing)
much faster in the case of VSS. This result well agrees
with numerical simulations presented in Fig. 5. In principle,
the proposed balancing strategy modulates the variable ankle
stiffness in a way so as to dissipate the external disturbance
more effectively, which enables the flywheel angular deflection
to be contained more. This helps to decrease CoM position
error.

V. DISCUSSION AND CONCLUDING REMARKS

This paper presented a biologically-inspired novel balance
controller that makes use of the ’variable physical’ stiffness
for the first time in the legged robot control literature to
the authors’ knowledge. Through the use of torsional spring-
loaded flywheel model, balance recovery via ZMP feedback

is addressed by means of physical ankle stiffness modulation.
This phenomenon is also observed in humans [21], [30]–[32].
The proposed controller outperformed the optimal constant
ankle stiffness strategy in dissipating the external disturbances.
This property enabled the robot to exhibit satisfactory bal-
ance recovery behavior in terms of convergence rate to the
equilibrium state, well-contained ZMP/CoM position error and
reduced mechanical power.

That being said, air mass consumption rate appears to
increase. While this should be noted as a limitation, this
behavior is not inherent to the implemented balance controller.
Rather, it is attributed to the nature of antagonistic setups.
In [37], Carloni et al. presented a port-based analysis which
suggested that a certain portion of power flow is internally
stored, and therefore cannot be used to do work, during
the nominal operation of variable stiffness actuators with
antagonistic setups. Since PAMs must be antagonistically
coupled to generate bidirectional joint torque, increased air
mass consumption rate is inevitable, in particular, when the
stiffness is modulated.

Numerical simulations also showed that the proposed
method outperforms the optimal constant ankle stiffness
method. After disturbing three times with different amplitudes,
the CoM travels less when returning to the equilibrium posi-
tion in each case. This is in good agreement with the experi-
ment results. Moreover Fig. 6(a) indicates that the horizontal
impact was around 100 [N] in our experiments. This caused a
drop in ankle stiffness up to 48.5 [Nm/rad]. A comparable drop
is also seen in the second numeric simulation; implementing
a perturbation of 100 [N] led to a decrease in ankle joint up
to 46.5 [Nm/rad].

The proposed controller utilizes the ankle joint. In [38],
Stephen showed that hip strategy could be utilized in addi-
tion to ankle strategy. While the proposed method can be
accordingly enhanced for a robot with variable stiffness hip
joints, ankle strategy was observed to be the main and primary
stabilization action in humans [39]. The study in [39] also
emphasized that no ’hip-only’ strategy was observed; rather,
it appears to be an auxiliary stabilization action to support the
ankle strategy. With this in mind, this study focused on the so-
called ankle strategy. Currently, our bipedal exoskeleton XoR
is under hardware maintenance to provide variable stiffness
in all joints. Upon the completion of this modification, aux-
iliary supportive strategies will be investigated on top of the
proposed controller.

Speaking of auxiliary controllers, Morasso and Sanguineti
defended that ankle stiffness modulation alone is not sufficient
to stabilize human quiet standing [40]. Indeed this is expected,
as the achievable stiffness range has upper and lower bounds
for biological muscles. Akin to their biological counterparts,
PAM-powered joints have certain stiffness operation ranges
as well. Depending on the disturbance amplitude, the desired
ankle stiffness may be out of the operation range, potentially
hampering the success of the stabilization. Since this is a cer-
tain limitation for almost all the muscle-powered systems, one
may utilize additional strategies when the stiffness saturation
occurs. Another possible solution is to use variable stiffness
actuators with theoretically infinite stiffness range, such as the
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one reported in [23], although such actuators have not been
fully downsized yet to power multi-DoF systems. Therefore,
the maximum disturbance that can be handled by the controller
is hardware-dependent.

After the hardware modification on XoR, the future work
will include the development of the auxiliary strategies, on
top of the proposed baseline stabilizer that utilizes physical
ankle stiffness. In addition, human-robot coupled stability will
be scrutinized to eventually address real-time balance control
while the robot is utilized in clinical rehabilitation tests.
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