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Most real-world decision-making problems involve consideration of numerous possible actions, and it is
often impossible to evaluate all of them before settling on preferred strategy. In such situations, humans
might explore actions more efficiently by searching only the most likely subspace of the whole action space.
To study how the brain solves such action selection problems, we designed a Multi Feature Sorting Task in
which the task rules defining an optimal action have a hierarchical structure and studied concurrent brain
activity using it. The task consisted of two kinds of rule switches: a higher-order switch to search for a rule
across different subspaces and a lower-order switch to change a rule within the same subspace. The results
revealed that the left dorsolateral prefrontal cortex (DLPFC) was more active in the higher-order switching,
and the right fronto-polar cortex (FPC) was significantly activated with the lower-order switching. We
discuss a possible functional model in the prefrontal cortex where the left DLPFC encodes the hierarchical
organization of behaviours and the right FPC maintains and updates multiple behavioural. This interpretation
is highly consistent with the previous findings and current theories of hierarchical organization in the
prefrontal functional network.

© 2009 Elsevier Inc. All rights reserved.
Introduction

In the real environment around us, there may be numerous
possible behaviours available to us at any point, and it may be
impossible to immediately make an appropriate decision by evaluat-
ing all of them. To adapt to a dynamic environment, moreover,
humans must seek candidate actions efficiently and select the best
one within a limited time. Recent studies in the theoretical field
suggest that adopting a hierarchical structure of candidate actions
seem to exhibit superior performance in action selection and learning
(Barto and Mahadevan, 2003; Wiering and Schmidhuber, 1998). In
psychology, hierarchy has played a pivotal role in understanding
organized, goal-directed behaviour, from early pioneering work
(Milner, 1963; Newell and Simon, 1963) through to recent studies
(e.g., Botvinick and Plaut, 2004; Schneider and Logan, 2006). From a
neuroanatomical point of view, the organization of cortex is strongly
hierarchical, and behavioural hierarchies in decision making has been
proposed to be implemented within the prefrontal cortex (Badre,
2008; Botvinick, 2008; Koechlin et al., 2003; Wood and Grafman,
2003). Recently, theoretical studies have suggested that a hierarchical
method derived from computational theory (i.e., hierarchical rein-
forcement learning) might be implemented by human prefrontal
cortex (Botvinick, 2008; Hazy et al., 2007); however, it remains
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unclear whether and how such a hierarchical mechanism might
operate in the brain.

Humans often select actions according to some sort of decision
rule; he/she should consider switching between rules in response to
environmental changes. The Wisconsin Card Sorting Task (WCST)
(Grant and Berg, 1948) is one of the best-known tasks for studying
such a rule switching process. In the WCST, the subject is required to
discover a hidden correct rule from many possible rules using true/
false feedback given correspondingly to the selected rule. Since the
correct rule often changes without notice, the subject should try a
new rule if he/she receives a false feedback. Many imaging and lesion
studies have shown that prefrontal cortex is closely involved in
solving WCST (Berman et al., 1995; Goldberg et al., 1998; Hampshire
and Owen, 2006; Konishi et al., 1998; Konishi et al., 2002; Lie et al.,
2006;Monchi et al., 2001;Wang et al., 2001). However, although all of
these tasks involved rule switch processes, different regions of the
prefrontal cortex were reported as being engaged in rule switch
functions and functional segregation of these regions has yet to be
clarified.

To identify brain regions involved in a hierarchical rule searching
mechanism, in this study, we designed a Multi Feature Sorting Task
whereby behavioural decision rules have a hierarchical structure. The
rules in our task could be categorized into two levels: high level meta-
rules and low level standard rules. Accordingly, this produces two
kinds of rule switches: a higher-order meta-rule switch which
changes a meta-rule to search for a rule belonging to the other
meta-rule class and a lower-order rule switch to change rules within
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the same meta-rule class. Based on neuropsychological and neuro-
physiological findings, recent studies have suggested that the neural
mechanisms underlying the production of hierarchically organized
behaviour resides, at least in part, within the prefrontal cortex (Badre,
2008; Botvinick, 2008). Koechlin and Hyafil (2007) showed that the
PFC not only represents nested levels of behavioural rules but also
allows switching among multiple independent hierarchies. We
assume that the dorsolateral prefrontal cortex and the fronto-polar
cortex, in which the activations are observed in several decision-
making tasks that involve hierarchical switching (Daw et al., 2005;
Koechlin and Jubault, 2006; Strange et al., 2001; Thompson-Schill
et al., 2005), are involved in levels of switching in hierarchically
structured behavioural rules. Using this newly devised task, we
conducted an fMRI experiment which showed that the different
cortical brain regions were activated during higher- and lower-order
rule switching. Our results suggest that different regions in the
prefrontal cortex may cooperate to solve complicated decision
making in an efficient manner.

Materials and methods

Subjects

Sixteen healthy subjects (12 males and 4 females) participated,
having giving written informed consent. The study was approved by
the ethical committee of Advanced Telecommunications Research
Institute International (ATR-I), Japan. Each subject was paid a fixed
monetary reward regardless of task performance. To acquire
proficiency in the task, on the day before scanning, all subjects were
given verbal and written explanations of the aim and procedures of
the behavioural tasks and practiced a training task, which is identical
to the scanning task, outside of the MRI scanner.

Experimental task

We designed aMulti Feature Sorting Task in which the subject was
required to sort three figures according to their features, and this was
repeated twice in a given trial. The task was displayed on a computer
screen, and the sorting was performed by pressing buttons with his/
her right hand (Fig. 1A). Each figure had three cardinal features; ‘form
(number of vertices: triangle, square, or pentagon)’, ‘size (small,
medium, or large)’ and ‘colour/brightness (light, medium, or dark
green)’. Thus on each of these features, each figure could be
categorized as ‘large’, ‘middle’ or ‘small’. Each figure never shared
any feature with either of the other two figures on each presentation;
Fig. 1. Experimental design. (A) Each single trial contained two sorting behaviours. At the
subjects sorted the three figures by pushing the corresponding three buttons one by one (so
(sorting 2). With the button pressing, a circle above the corresponding figure was displaye
positive (50 pt) or a negative (0 pt) feedback was displayed (6 s) based probabilistically on
features (form, size and colour), and each feature has three levels. Thus, there are six option
panel A could be identified from the subject's behaviours indicated by circles as ‘descending
trial, the sorting rule, which was the criterion of feedback, was defined based on the combi
categorized into two meta-rules; a ‘feature meta-rule’ (FR) and an ‘order meta-rule’ (OR
features or orders (wild cards). For example, FR1 requires that the features used in two sort
and ascending orders in each of the two options.
i.e., for example, there was only ever one triangle, and only ever one
large figure. Thus, a set of three figures can be sorted in either two
ways, ‘ascending order’ or ‘descending order’, with respect to each of
the three features; such that there are six possible sorting ways for
each set of three figures. After the first sorting, another set of figures
were displayed for the second sorting, and the subjects were required
to sort them in the same or different way. Thus, there are 36 possible
pairs of options in each trial.

The goal of the task was to correctly sort the figures according to a
particular rule among six rules, which are defined based on the
combination of the pair of sorting options (see Fig. 1B). Since the
abstract rule was defined based not on features, sorting options or
orders of two sorting options but only on their combination, the
correspondence between rules and pairs of sorting options is not one-
to-one but one-to-many. For example, a rule might be ‘sort the figures
once according to form, and once according to size’ or, alternatively,
‘sort the figures once in an ascending order of any feature, and once in
a descending order of any feature’. The six rules are illustrated in
Fig. 1B. The rules were categorized into two meta-rules; in summary,
the subject's behaviour of each trial is one of 36 sorting pairs, which is
categorized in one of six rules, which is categorized in one of two
meta-rules, so as to give a hierarchical structure for the sorting rules.
One meta-rule was a ‘feature meta-rule’ which focuses only on the
combination of features in the two sorting options and not on sorting
orders. The other meta-rule was an ‘order meta-rule’ which focused
only on the combination of orders in the sorting options regardless of
features. Thus, each rule never required the combination of a feature
sorting and an order sorting within a trial. Each meta-rule has the
same number of rules (three rules each), while the numbers of sorting
pairs belonging to each rule vary from three to eight. Namely, order
meta-rules have three or six sorting pairs; a meta-rule with a pair of
ascending and descending orders (OR3 in Fig. 1B) has six sorting pairs
because there are three features and two ways of order (sort in
ascending order first and then descending order and the opposite
way) and the other meta-rules have three sorting pairs (OR1 and
OR2). All of feature meta-rules (FR1, 2, and 3) have eight sorting pairs
because the feature in the order meta-rule was required to be the
same for two sorting options. However, all subjects showed a
pronounced tendency to use only 1 or 2 preferred sorting option
pair(s) within each rule, and thus the behavioural variation (entropy)
of used sorting pairs did not significantly depend on the number of
option pairs in each rules.

For each trial, a hidden correct rule was selected by the computer
from the six rules, and feedback was displayed after the subject
finished a pair of two sorting options. In real life, it is often difficult to
beginning of a trial, three figures and a fixation cross were displayed (2 s), and the
rting 1), after which three figures of the next set were displayed (2 s) to sort once again
d so that the subjects could confirm their sorting actions. After a short delay (0–4 s), a
whether the rule used for sorting the two sets was correct or not. Each figure has three
s for each sorting in total. For example, the option selected by the subject in sorting 1 in
order of size’, i.e., the sorting order is large, middle and small size figures. (B) For each
nation of the used pair of sorting options. There were six abstract rules, and they were
), each of which includes three sorting rules. Asterisks denote the acceptance of any
ing behaviours are colour and form, or the opposite but allows either of the descending
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decide optimal action for sure due to the ambiguity and uncertainty
inherent in environmental signals. To reflect this environmental
realism and focus on self-generated switching by evaluating the value
of actions bit-by-bit using past experiences, we use probabilistic
reward and rule transitions. For the feedback, when the subject's rule
was same as the correct one, the subject received positive feedback
(50 points) with 90% probability but negative feedback (0 points)
with 10% probability, while if they were incorrect, they received
negative feedback with 90% probability but positive feedback with
10% probability. When the used rule agreed with the correct one on
three successive trials, even if the positive feedback was not given in
those trials, the correct rule was changed to another one, unbe-
knownst to the subject. The new rule was selected with a higher
probability (70%) from the same meta-rule class (called rule change)
than from the other meta-rule class (called meta-rule change).
Although the subjects did not know the detail of the settings, which
are both the probability of feedback and the changing frequency of
correct rules, they were informed that the feedback would be
probabilistic and the frequencies between rule and meta-rule change
would be different. They were trained to perform the task well
beforehand, such that they had ample opportunity to learn the
hierarchical rule structure.

Each single trial contains two sorting procedures, each of which
lasted 2 s. If the subject successfully finished two sortings within this
period, a positive or negative feedback was displayed for 6 s after a
short delay. The feedback delay was set between 0 and 4 s at random;
thus, each trial took between 10 and 14 s. The scanning experiment
was composed of three contiguous sessions separated by brief
interval. Each session consisted of the first main task (45 trials), a
control task (5 trials) and the secondmain task block (45 trials). Thus,
each subject performed six task blocks in total. In the control task, the
basic experimental procedure was the same as the main sorting task,
but the correct rule was instructed as a visual message at the
beginning and fixed during all trials, and the subjects thus did not
need to select a rule by themselves.

Behavioural model and simulation procedure

To investigate whether the subjects performed the task based on a
hierarchical searching strategy that incorporated the hidden rules, we
proposed a simple behavioural model and assessed its ability to
reproduce the behaviour on a subject-by-subject basis.

At the tth trial in this task, the subject selected a rule Rt based on
the history of rules estimated and used in the past, R1:t−1, and the
corresponding feedback, FB1:t−1. Since the feedback information was
probabilistic, it did not allow the subject to fully identify the correct
rule after each trial. Thus, we assumed that the subjects, after having
been given a feedback stimulus, evaluatedwhether their used rule had
been correct or not and then predicted the correct rule on the
subsequent trial. Corresponding to the ambiguity in the feedback, we
assumed that the subjects estimated the correctness of their used rules
in a probabilistic manner; this process was modelled as a probabilistic
generative model (likelihood). When the used rule agreed with the
correct rule, the probability that positive feedback was given was β
and negative feedback was 1−β. When the used rule disagreed with
the correct rule, on the other hand, the positive feedback probability
was 1−β and the negative feedbackwas β. Based on the estimation of
a correct rule and the given feedback, the subjects would predict
whether the correct rule should change or not. Since the subjects were
instructed that the correct rulewas not changed until they had found it
successfully, in the case of negative feedback (FBt=0), they were
assumed to predict the correct current rule to remain as previous
Rt+1=Rt. In the case of positive feedback FBt=1, in contrast, it was
assumed that the subjects expected that the correct rule might be
changed probabilistically: meta-rule change with probability αm, rule
change with αr or no rule change with (1−αm−αr).
According to the Bayes rule, the probability for selecting each rule
R was calculated as the probability for being a new correct rule at the
next trial, i.e., the prediction using the previous information consisting
of used rules and given feedback.

P Rt + 1 jFB1:t ;R1:t
� �

~
X

Rt
P Rt + 1 jRt ; FBt

� �
P FBt jRtð ÞP Rt jFB1:t−1;R1:t−1ð Þ

Considering the hierarchical structure of rules, subjects ought to
give priority to the rules within the current meta-rule class. When the
subject switched to the other meta-rule class, the probabilities of the
rules being included in the new meta-rule class were equal because
there was no information to prioritize those rules. These factors were
modelled as P(Rt+1|Rt, FBt). The three parameters of our simulation
model, β, αm and αr, were determined so as to maximize the ‘marginal
likelihood’ (MacKay, 2003), P(R1:T)=Πt P(Rt |R1t−1), which repre-
sents the reproducibility of the sequence of rules selected by the
subject, R1:T, where T is the number of trials in the block.

We assumed that the subjects would select the most likely rule in
this prediction: the rule whose probability was maximum among all
rules would be selected, defined as the rule prediction by the model.
At each trial, we examined whether or not the rule selected by the
subject agreed with the prediction one and then calculated the action
reproduction accuracy of our model as the rate of successful
prediction. When there were multiple rules whose probabilities
were equally maximal, the prediction was regarded as correct when
the selected rule agreed with any of the predicted ones.

Imaging data and analysis

Functional images were obtained with T2⁎-weighted EPIs with
BOLD contrast (TE: 48 ms; FA: 80°) using a 1.5-T scanner (Magnetic
Eclipse; ShimadzuMarconi, Kyoto, Japan). The volumeswere acquired
every 2 s (TR) and contained 20 slices each of 5-mm thickness (matrix
size: 64×64; FOV: 192×192 mm), synchronized with stimulus
presentation. The first six (12-s) EPIs in each session were removed
from scanning data to avoid T1 equilibrium effects. Each scanning run
began with a T1-weighted anatomical image acquisition (voxel size:
1 mm3).

The imaging data were analyzed with SPM5 (Wellcome Trust
Centre for Neuroimaging, UCL, London, UK) in a standard manner.
Briefly, all functional images from each subject were realigned to the
first image as a reference, coregistered to the individual anatomical
image and normalized into a standard template (Montreal Neurolog-
ical Institute) and spatially smoothed with a Gaussian kernel (FWHM:
10 mm). For each subject, the data were high-pass filtered using a
low-frequency cosine function with a cutoff time of 60 s andmodelled
as the weighted sum of regressors corresponding to the effects of
interest. To identify neural activities involved in switching behaviours,
we defined three kinds of event at the onset of feedback in the
previous trial according to the subject's behaviour in that trial. The
first was ‘rule switch’, in which a subject used a different rule within
the same meta-rule class as the previous one. The second was ‘meta-
rule switch’, in which a subject tried a new sorting rule whose meta-
rule class was different from the previous one. The third was
‘exploitation’, in which a subject used the same rule as in the previous
trial. In addition, to control formotor-related activity, another event at
the onset of sorting (stimulus presentation) was created. For the
sorting and control tasks, sustained activity was modelled as an epoch
using a boxcar function covering the whole block consisting of 45 and
5 trials, respectively. The events were orthogonalised by the Gram–

Schmidt method to remove inter-event correlations: the rule switch
event was orthogonalised to the sorting boxcar function first. All
events and epochs were convolved with the canonical hemodynamic
response function.

Accordingly, we conducted an event-related analysis utilizing the
rule switch, meta-rule switch, and exploitation events on the whole
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brain. The parameters, the coefficients of the regressors, for the best
fitting model were found for each subject and then subjected to a
group random effects analysis; for each voxel in the brain, single-
sample t tests were used to determine whether the contrast of
parameter estimates between conditions (e.g., rule and meta-rule
switch) was significantly different from zero. For the second analysis,
we applied statistical thresholds at the voxel level of pb0.001
(uncorrected) and at the cluster level of pb0.05 (corrected). To see
how the activation within a particular brain area changed with time,
we also conducted a time-course analysis of regions using activations
from previous SPM group analyses and an anatomically defined area.
The activation level for each region was represented as the percent
signal change at the peak voxel within the region.

Results

Behavioural results

Performance on the task did not differ among the six sorting
blocks: the ratio of missed trials, where the subjects did not finish
three button-pressing actions within the allotted time, 3.36±1.53%,
and the mean reaction time (RTs), 728.6±10.9 ms, did not change
across sessions. This lack of a learning effect is in keeping with the fact
that subjects were trained to perform the task well before scanning,
and subsequent imaging and behavioural analyses considered all
blocks together.

Since the rule change in the task was dependent on the subject's
performance, the number of rule changes varied among subjects: the
mean was 40±5, in which the meta-rule change (13±2) occurred
less frequently than the rule change (27±3). Fig. 2 shows a typical
example of a behavioural profile during a block including two meta-
rule and five rule changes.

Each trial consisted of a pair of sortings, any of which can be
uniquely defined as a rule. Following positive feedback, subjects
typically kept choosing the same rule (exploitation), and the proba-
bility of such exploitation, averaged over all subjects, was 95.1±3.8%
(Fig. 3A). In contrast, following negative feedback, the subject
typically switched to try another rule. In this situation, as expected,
the subject tended to exhaustively explore all rules within the same
meta-rule class as the previous rule (rule search) before switching to
search the rules of the other meta-rule class. Specifically, most meta-
rule switches (71.6±19.6%) occurred after exploring all rules within
the previous meta-rule class, and very few (3.8±6.5%) occurred with
none. We also confirmed that the behavioural strategy shifted
sequentially from exploration, to rule search, and then to meta-rule
Fig. 2. An example of a subject's behaviour profile in a sorting task block, where the
abscissa denotes the number of trials. The line denotes the transition of correct rules
and the cross denotes the subject's used rule in each trial, either of meta-rule switch
(MSW, closed circle), rule switch (RSW, open circle) or exploitation (EXP, cross).
Triangles indicate the trials in which the subject received feedback stimuli
contradictory to the used rule due to the probabilistic nature of feedback stimuli. The
gray and white backgrounds show the periods when the correct rule is in order and
feature meta-rule classes, respectively. When the meta-rule change occurred at the
10th trial, the subject first explored all rules within order meta-rule class and then
switched to feature meta-rule class. Opposite-directional behaviours were also
observed after the 33rd trial.
search following successive negative feedback (Fig. 3B). These results
support the hypothesis that the subjects employed a hierarchical
exploration strategy for the correct rule using two switching
behaviours, the rule and meta-rule switches.

For each trial, we analyzed the RTs of the six actions from the two
sorting procedures (each of which involved three button-press
actions). A statistical t-test analyzing the RTs demonstrated that the
first action (727.8 and 683.2 ms) took significantly longer time than
the second (248.3 and 247.3 ms) and third actions (241.0 and
238.0 ms) in both the first and second sorting decisions (pb10−5 for
all). This suggests that subjects may have decided on their sorting
procedure following the first presentation of each set of figures. The
RTs of first action did not show any statistically significant difference,
however, between the first and second sorting (t=1.554, p=0.131).
In addition, in the first sorting, there was no significant evidence that
the RTwas shorter in the no-switching trials (exploitation) (727.8ms)
than in the switching trials (728.2 ms) (t=0.013, p=0.990), even
though the switching operations might require additional neural
processing (Wylie and Allport, 2000) in general. Furthermore, there
was no significant difference in the RTs between the meta-rule switch
(759.4 ms) and rule switch trials (719.4 ms) (t=1.307, p=0.202).
These results suggest that the time interval from the feedback in the
previous trial to the first stimulus presentation (6 s) was sufficient for
the subjects to determine their sorting rule, including both rule and
meta-rule switching, and suggests that switching-related brain
activity may be observed during this period.

To quantitatively examine the hypothesis that the subjects
searched for the correct rule in consideration of the hierarchical
structure of rules in the task, we modelled the subjects' behaviours as
a probabilistic model and estimated the three model parameters β,
αm and αr, which correspond to the probabilities that the true
feedback was given, meta-rule change occurred after a positive
feedback and rule change after a positive feedback, respectively (see
Methods). According to the maximum likelihood estimation for each
block, the feedback probability (β) was estimated as 92.0±7.2%,
which was close to the actual value of 90%. Furthermore, the
estimated rule change probability was larger than that of meta-rule
change, αrNαm (67.8±16.6%N13.6±9.1%), for all 96 blocks. These
results suggest that the subjects proficiently estimated the detailed
but hidden probabilistic structure of the task and efficiently searched
for rules in a hierarchical manner. In addition, by inserting the
estimated parameters back into themodel, we were able to reproduce
the subjects' selected rules with 81.5±5.6% accuracy. This reproduc-
tion accuracy was substantially higher than the chance level, 25%,
which corresponds to the case that the subjects randomly selected
any one of three rules within the same meta-rule class or any rule
within the other meta-rule class at each trial, suggesting that the
subject processing model we assumed was substantially reliable,
whose parameters estimated by the maximum likelihood criterion on
a subject-by-subject basis could incorporate somehow different
information processing between the subjects.

Imaging results

We first investigated areas significantly activated with the two
different kinds of rule switch in comparison to the exploitation
condition. While the switch trials almost always occurred after
negative feedback, the exploitation trials also follow negative
feedback sometimes (26.6±15.3%) because of the probabilistic
feedback. To identify brain activity correlate with rule switch which
is not affected by feedback type, we compared the switch trials and
the exploitation trials only after negative feedback (Fig. 4, and the
statistics are also summarized in Table 1). In the rule switch condition,
the group analysis showed significant activation in anterior cingulate
cortex (ACC), the right fronto-polar cortex (FPC) on themiddle frontal
gyrus (BA10) and bilateral insula. On the other hand, we observed



Fig. 3. Action selection probabilities of three kinds of behaviors; exploitation, rule search andmeta-rule search. The means and standard deviations (error bars) of the subjects after a
positive (50 pt) and negative (0 pt) feedback (A) and after one to six negative feedbacks in a row (B).

Fig. 4. Significantly activated areas related to rule switch vs. exploitation (A) and meta-rule switch vs. exploitation (B) after negative feedback.

318 W. Yoshida et al. / NeuroImage 50 (2010) 314–322



Table 1
Maximally activated voxels in areas exhibiting significant activity in rule switch and
meta-rule switch than exploitation.

Talairach axis

R/L BA x y z Z-value k

Rule switchNexploitation
Insula L 21 −40 16 −1 3.88 207
Anterior cingulate R 24 6 38 26 3.84 296
Insula R 21 32 19 −8 3.65 374
Middle frontal gyrus R 10 30 55 6 3.06 332
Mediodorsal thalamic nucleus – – −12 −14 −11 3.59 424

Meta-rule switchNexploitation
Substantia nigra – 7 6 −1 9 3.88 313
Anterior cingulate – 24 0 28 24 3.73 347
Middle frontal gyrus L 10 −32 57 12 3.54 147
Inferior frontal gyrus L 46 −53 32 21 3.42 141

Table 2
Maximally activated voxels in areas where significant evoked activity was related to
two switch events.

Talairach axis

R/L BA x y z Z-value k

Rule switchNmeta-rule switch
Middle frontal gyrus R 10 34 56 3 3.43 241

Meta-rule switchNrule switch
Superior parietal lobule L 7/19 −32 −64 40 4.70 1306
Posterior cingulate – 23/31 −6 −32 −4 4.02 418
Inferior/middle frontal gyrus L 45/46 −54 20 16 3.94 307
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similar activation patterns but on the left cortical hemisphere in the
meta-rule switch condition: ACC, the left middle frontal gyrus (FPC,
BA10) and the left dorsolateral prefrontal cortex (DLPFC, BA46). We
also observed the activations of some nuclei in the basal ganglia and
the thalamus for both switch conditions.

To clarify which of these activated areas is specifically related to
each of switching functions, we next compared brain images
between the rule and meta-rule switch trials (Fig. 5A with the
related statistics summarized in Table 2). In the rule switch
condition, we observed correlated activity only in the right middle
frontal gyrus in FPC (BA10), while in the meta-rule switch condition,
the significant areas were in the left posterior parietal cortex (PPC)
on the superior parietal lobe (BA7) and the left dorsolateral
prefrontal cortex (DLPFC) on the inferior frontal gyrus (BA45) and
middle frontal gyrus (BA46). Here we showed the results of analysis
with both positive and negative feedback trials; however, the
Fig. 5. (A) Significantly activated areas related to meta-rule switch vs. rule switch (left), rul
activated areas in panel A; the left posterior parietal cortex (PPC) and dorsolateral prefronta
rule switch, related to three conditions: the meta-rule switch (red), the rule switch (blue) an
rate and the scan number (2 s per each scan) elapsed since the feedback presentation in th
analysis limited to only negative feedback trials did not alter the
results significantly. To compare the temporal changes of signal
intensities after feedback presentation which is the trigger of the rule
switching, we applied a time-course analysis to each of these four
areas (Fig. 5B). In the meta-rule switch trials, the left PPC showed a
salient activation peak but not in the rule switch and exploitation
trials. In the left DLPFC, although the overall activation level was
higher in the meta-rule switch trials than in the rule switch and
exploitation trials, the time courses resembled each other in all three
conditions. The right FPC, the activated area with the rule switch
condition, showed significant activations but no distinct peak or
rather the activity decreased in the meta-rule switch condition. To
test the possibility that this deactivation is mainly comprised by the
medial FPC—an area previously shown to active in the ‘default-mode’
processing (or the ‘default-mode’ network) (Gustard and Raichle,
2001), we divided the right FPC into two regions – the lateral and the
medial part – and calculated the signal time courses separately. We
found the deactivation starts faster and stays longer in the medial
part, although there was no overall significant difference (p=0.92,
data not shown).
e switch vs. meta-rule switch (right). (B) Time courses of BOLD responses in the three
l cortex (DLPFC) with the meta-rule switch, and the fronto-polar cortex (FPC) with the
d the exploitation (green). The ordinate and abscissa denote the BOLD signal changing
e previous trial, respectively.
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Discussion

The behavioural results show that humans can accurately learn
and represent the probabilistic architecture of the environment and
use it to guide decisions. The imaging results show that distributed
regions of prefrontal cortex could be involved in such processing.
Critically, we show that dissociable regions of prefrontal cortex are
engaged in decisions at different levels of the decision structure,
suggesting that different hierarchical levels of an internal model of the
environment are encoded in an anatomically distributed manner.

Rule switch

In the task, subjects decided whether or not to switch sorting rule
based on feedback relating to the previously applied sorting rule.
Because there was a hierarchical structure to the rules, an appropriate
exploration strategy for a new rule is also hierarchical, consisting of
either a switch within the same class of rules; a (lower-order) rule
switch, or of a switch to a different class of rules; and a (higher-order)
meta-rule switch. The ACC was the only brain region to be activated
for both types of rule switch.

The ACC has been considered to be related to error detection
(Braver et al., 2001; Rushworth and Behrens, 2008) and response
conflict (Botvinick et al., 1999; Carter et al., 1998) and activated with
voluntary switching of behavioural rules based on monitoring of self-
generated actions in both human (Bush et al., 2002) and monkey
studies (Shima and Tanji, 1998). Although the switch behaviour
follows negative feedback in general, the ACC activity has been
observed with either negative or positive stimuli (Knutson et al.,
2001; Shidara and Richmond, 2002) and it is suggested that this area
monitors whether the given information induces immediate beha-
vioural changes regardless of the value (Ullsperger and von Cramon,
2004). In our task, the subjects perceived the feedback with some
degree of uncertainty because it was given probabilistically, and thus
they sometimes did not switch the rule after a negative feedback. The
probabilistic nature of reward allowed us directly to compare brain
activation induced by rule switch but not by feedback type unlike
previous studies in which the control is non-switch trials after
positive feedback. Our results show the ACC activity with two types of
rule switch consistently and suggest that this area monitors response
conflict to adjust a behavioural rule appropriately both within and
over a category.

Higher-order meta-rule switch

In the higher-order ‘meta-rule switch’ compared with the lower-
order ‘rule switch’ condition, we observed increased activation in the
left DLPFC and the left PPC.

The DLPFC has been shown to be active when negative feedback is
given in rule switching tasks (Konishi et al., 2002; Monchi et al.,
2001), considered to be related with cognitive functions; for instance,
attention allocation (MacDonald and Joordens, 2000), response
competition (Bunge et al., 2002; Rowe et al., 2000) and suppression
of irrelevant information (Dreher and Berman, 2002; Swainson et al.,
2003). Especially this region on the left hemisphere has been also
known as a pivotal area in the retrieval process for episodic memory
from patient (Burgess and Shallice, 1996; Milner, 1963; Moscovitch
and Melo, 1997) and imaging studies (Dobbins et al., 2002; Lepage et
al., 2003; Rugg and Wilding, 2000), the left inferior frontal gyrus has
been also known as a pivotal area in the retrieval process for episodic
memory. Dobbins and his colleagues studied the dissociation of
cognitive functions involved in episodic memory and showed that the
activated region in our task is also related to the strategic control of
source memory when a cue does not directly specify the requisite
representation. As the meta-rules in our task can involve intensive
representations of lower-order rules, restricting the search space
based on meta-rule switches may exploit the strategic control for
episodic memory, i.e., contextual information, and our result is
consistent with the theory that this region manipulates aggregated
information.

The other activation area, the PPC, has long been studied primarily
in relation to attention, and recent imaging studies have revealed that
this area is activated during switching tasks (Dove et al., 2000;
Kimberg et al., 2000; Sohn et al., 2000). Such activation was also
reported during switching between different modalities, namely
motion and location, of visual stimuli (Liston et al., 2006), and
suggested to be involved in shifting attentional set (Yeung and Cohen,
2006). In our task, only the left PPC activation was stronger in the
meta-rule switch than in the rule switch condition.

The left posterior prefrontal region has been known to be
associated with human language (Martin, 2003), especially for the
processing of sentences requiring a hierarchical reordering of the
arguments due to a non-canonical surface structure or due to
embedded structure (Kaan and Swaab, 2002; Musso et al., 2003;
Roder et al., 2002). Although this area plays a pivotal role in
unification within the domain of language, this does not mean that
it is a language-specific area and the activity has also been found
during action recognition (Decety et al., 1997; Hamzei et al., 2003)
and movement preparation (Thoenissen et al., 2002). Recent imaging
experiment (Koechlin and Jubault, 2006) have observed the activity
increase of this area in hierarchically structured action plan task. In
this task, there is ‘simple chunks’ consisting of pre-learned sequential
actions and ‘superordinate chunks’ composed of simple action chunks.
Their results showed a clear posterior–anterior gradient in the left
prefrontal cortex; the posterior part actives during boundaries
between simple chunks and the anterior part actives between
superordinate chunks. This is consistent with a monkey study which
showed ‘higher-order’ category information is encoded in prefrontal
neurons (Shima et al., 2007). The meta-rule in our task has a
superordinate structure of the abstract rules and our results support
the hypothesis that this brain region is involved in a specialized
executive system for the hierarchical organization in multiple
domains of human cognition (Thompson-Schill et al., 2005) including
goal-directed decision making.

Time course analysis of significantly activated regions indicated
that the timing of activation was different between the DLPFC and PPC
(Fig. 5). The peak activity in the PPC occurred 6 s (3 scans) after the
feedback presentation, followed by the DLPFC peak activation with a
2-s delay. These results are consistentwith a result of theWCST task in
which the DLPFC showed a prominent increase 7 s after the switching
cue (Konishi et al., 1998) and with the present knowledge that
sensory inputs are integrated in the PPC and then delivered to the
DLPFC to allow decisions of appropriate behaviours. As a speculative
interpretation, after a negative feedback is given, the subject shifts
attentional set in the PPC and then loads superordinate chunks of rule
candidates in working memory in the DLPFC.

Lower-order rule switch

In the rule switch condition, only the right FPC (BA10) was
significantly activated. A previous study using a categorization task
suggested that the right FPC was involved in seeking of hidden correct
rule by trial and error (Strange et al., 2001), while this region was not
activated when subjects sought a correct rule in WCST (Konishi et al.,
1998; Monchi et al., 2001). Although subjects in both of these tasks
had to switch rules after a given unfavourable feedback, the operation
required for selecting the next rule was different between these tasks.
In the categorization task, since each stimulus could be compatible
with multiple rules, the subject could eliminate not only the used rule
but also several other rules. In the WCST, in contrast, since the
feedback was dependent only on the used rule, the subject removed
only that from the candidates. This difference implies that the some
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additional operation on possible rule candidates is allowable in the
categorization task, but not in the WCST.

While these tasks used deterministic feedback, feedback in our task
was given probabilistically. The common feature of the categorization
task (Strange et al., 2001) and our task, in both of which BA10
activated, is that two or more rule candidates should be handled in
response to a given feedback due to the vague nature of given
feedback. In the rule switch trials of our task, likelihoods of rules were
updated so that the probability of the attempted rule (which was
maximum in the previous trial) was decreased and that of the others
within the same meta-rule class was increased. In the meta-rule
condition, on the other hand, as feedback for the used rule did not yield
any information of rule candidates belonging to the other meta-rule
class, the subjects just had to choose one of them arbitrarily. Thus, we
suggest that the FPC may be involved in updating the likelihoods of
multiple candidates (entropymaintenance) so as to redefine the rules'
priorities. This hypothesis is highly consistent with recent imaging
studieswhich showed the FPC is activatedwhen subjects are exploring
a hidden optimal option with simultaneous tracking of multiple
putative options (Daw et al., 2006; Yoshida and Ishii, 2006).

From the time-course analysis, we found the right FPC deactivation
in the meta-rule switch condition (Fig. 5B), while the left lateral FPC
showed significant positive activity (Fig. 4B). Recent study showed
that the FPC activity is positively correlated with evidence of
unchosen actions and negatively correlated with evidence of chosen
actions (Boorman et al., 2009). In our task, the subjects were required
to track two evidences calculated with different time scale; one for
meta-rules and one for rules, and at the time of meta-rule switch, the
evidence of unchosen meta-rule was increased and the evidence of
unchosen rules in the chosenmeta-rule was decreased. The functional
laterality of the FPC is currently an area of fervent interest (Braver
et al., 2003; Yeung et al., 2006; Konishi et al., 2002), which, however,
remains to be fully clarified. Our results suggest that the right and left
lateral FPC might encode short-term and long-term evidences of
unchosen rules, respectively.

Concluding remarks

Wedesigned aMulti Feature Sorting Task in which the behavioural
rules have a hierarchical structure and conducted an fMRI experiment
using this task. Subjects were able to apply two kinds of rule switch
which corresponded to the retrieval of different hierarchies. The left
DLPFC was specifically activated in the higher-order meta-rule switch
condition. It is considered that this region restricts the searching space
by handling intensive information, in agreement with previous
studies suggesting that the left DLPFC is involved in controlling the
hierarchical organization in decision making and recollecting infor-
mation from episodic memory. The right FPC was specifically
activated in the lower-order rule switch condition; this region may
thus be involved in prioritizing rules, in agreement with previous
work suggesting that the right FPC is involved in exploration with
maintaining and switching multiple behavioural options in search of
optimal behaviour. Our results suggest that humans can effectively
represent information in a hierarchical manner and support current
theories of hierarchical organization in the prefrontal functional
network (Badre, 2008; Botvinick, 2008).
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