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Abstract

In this paper, we discuss an optimal decision-making problem in an unknown environment

on the bases of both machine learning and brain learning. We present a model-based

reinforcement learning (RL) in which the environment is directly estimated. Our RL performs

action selection according to the detection of environmental changes and the current value

function. In a partially-observable situation, in which the environment includes unobservable

state variables, our RL incorporates estimation of unobservable variables. We propose a

possible functional model of our RL, focusing on the prefrontal cortex and the anterior

cingulate cortex. To test the model, we conducted a human imaging study during a sequential

learning task, and found significant activations in the dorsolateral prefrontal cortex and the

anterior cingulate cortex during RL. From a comparison of the mean activations in the earlier

and later learning phases, we suggest that the dorsolateral prefrontal cortex maintains and

manipulates the environmental model, while the anterior cingulate cortex is related to the

uncertainty of action selection. These experimental results are consistent with our model.
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1. Introduction

Although the environment around us is constantly changing, humans can learn the
features of their current environment and determine optimal behaviors. Assuming
optimality is defined as rewards received from the environment, an adaptation to the
environment can be formulated as an optimal decision-making problem with an on-
line identification of the current environment. We discuss here a possible reward-
based decision-making method that is based on both machine learning and brain
learning. To understand brain functions, it is important to integrate findings from
various research fields. The aim of our study is to discuss brain functions based on a
theoretical model and to evaluate it by means of neuropsychological experiments.

In the machine learning field, an optimal decision-making problem in a known or
unknown environment is often formulated as a Markov decision process (MDP). If
an MDP includes the direct identification of an unknown environment, the problem
can be solved by a model-based reinforcement learning (RL) method [7–9,15,26]. In
RL, the objective of an agent is to maximize rewards accumulated for the future,
which is achieved by improving the agent’s action selection. To improve the strategy
for receiving rewards (i.e., policy), a standard RL scheme then estimates expected
reward accumulation with respect to current policy, which is the value function. A
model-based RL [7–9,15,26] tries to identify current environment directly, and the
value function is approximated from the resulting environmental model. However,
human environments often include unobservable state variables. If we consider
decision-making by a card player, for example, cards held by the other players are
not directly observed and hence are unobservable variables. In a previous paper [11],
we presented a model-based RL method for a partially-observable Markov decision
process (POMDP) to deal with such a realistic problem. The POMDP assumes that
the environment contains unobservable variables. In this paper, we briefly re-
introduce our model-based RL method, and then propose a functional model for the
brain, in which our RL method is realized within a POMDP environment.

Because RL has provided a good model of animal behaviors (conditioning), with
recent neurophysiological and neuroimaging studies suggesting that RL algorithms
are associated with neural processing in the brain [1,23,30], the components of RL
could correspond to brain functions. We assume that the major parts of our RL
method (the environmental model, the value function and the estimation of
unobservable state variables) are involved in the prefrontal cortex (PFC): the
dorsolateral prefrontal cortex (DLPF), the orbitofrontal cortex (OFC) and the
anterior prefrontal cortex (APF). Our RL method also requires that action selection
is dependent on estimation of the current environmental model and the value
function. We consider that this operation occurs in the anterior cingulate cortex
(ACC).

To test our functional model, a human imaging study using functional magnetic
resonance imaging (fMRI) was conducted in this study. Although POMDP is
discussed in the computational section, the experimental study does not assume a
partially-observable situation. Our RL method within a POMDP, an extended
version of MDP, can be formulated by adding a hidden state estimation process to
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the scheme in MDP situations. In the experiment, we aimed to clarify fundamental
components of our functional brain model, that is, the brain regions realizing MDP.
In our MDP task, therefore, the subject is required to determine an optimal control
sequence while simultaneously identifying a Markov environment. Our imaging
study suggests that the posterior DLPF maintains, and the anterior DLPF
manipulates, possible environmental models, and that the ACC represents the
uncertainty of the action selection. These results are consistent with an essential part
of our model.
2. Model-based RL method

Assuming that an agent is provided by the environment with a scalar reward
corresponding to an action for each state, and that the optimality of the agent’s
action is determined by the amount of rewards, the optimal decision problem can be
solved by RL schemes. Since the objective of an RL agent is to maximize rewards
accumulated for the future, a standard RL scheme estimates the reward
accumulation which is called the value function. To make an appropriate decision
in an unknown environment, it is important to understand the dynamics of the
environment, i.e., how the current state changes by the agent’s own action. Model-
based RL methods [7–9,15,26], variations of RL, try to model the environmental
dynamics, and the value function is approximated using the model. Model-based RL
has an advantage, especially for dealing with partially-observable environments and/
or dynamic environments, because the environmental model can explicitly deal with
such complexity. A model-based RL also learns faster than a model-free alternative
which requires no model of the environmental dynamics.

Since the RL is often formulated as an MDP, the notion of MDP is briefly
introduced here. For further explanation, see [27]. We assume discrete Markov
environments; Pðs0js; aÞ gives the probability of reaching state s0 by selecting action a

at state s. If the state-transition probability is known, the value function for state s,
V ðsÞ should satisfy the following optimal Bellman’s equation:

V ðsÞ ¼ max
a

Qðs; aÞ; ð1aÞ

Qðs; aÞ � rðs; aÞ þ g
X

s0

Pðs0js; aÞV ðs0Þ; ð1bÞ

where rðs; aÞ denotes an immediate reward for the state-action pair ðs; aÞ and 0pgp1
is a discount constant. The action-value function Qðs; aÞ represents the expected
reward accumulation when the agent takes action a at state s and optimal actions at
subsequent states. The objective of RL is to obtain the optimal policy, which outputs
the action maximizing Qðs; aÞ for any state s. In many RL problems, the state-
transition probability Pðs0js; aÞ is unknown. The model-based RL tries to model the
environment directly by approximating the state-transition probability based on past
state transitions. The value function and the environmental model are therefore
learned concurrently but independently.
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2.1. Partially-observable MDP

In many real-world problems, learning agents can observe only a part of
dynamical variables. In the field of machine learning, such a real world is modeled as
a Markov environment with unobservable (hidden) state variables, and a decision
making problem in the environment is formulated as a POMDP [12]. Although the
experiment described in Section 3 is not a POMDP, we introduce the POMDP
formulation here because our RL model primarily assumes a real-world situation.

Let s � ðy; zÞ be an environmental state, where y and z denote observable and
unobservable state variables, respectively. Although the underlying dynamics of the
POMDP are still Markov, the environment with respect to the observable variables
does not have a Markov property [10], because a learning agent has no direct access
to the true state s due to the existence of unobservable variables z. One way to deal
with a POMDP is called a belief state MDP, in which the Bellman’s equation is
modified from that in MDP, (1), by replacing state s with belief state b. A belief state
is typically a probability distribution of the observable and unobservable variables.
Since there is no probabilistic factor for the observable variables, b ¼ ½y; P̂ðzÞ	, where
P̂ðzÞ is estimated from past observations. We assume that an agent can estimate a
new belief state b0

¼ ½y0; P̂
0
ðzÞ	, using the new observation y0. Even in a finite world,

where both state and action spaces are discrete and finite, the belief state MDP is
hard to solve, because the belief state value function is defined for the probability
distribution of the unobservable variables and is often intractable. Therefore, we
need an approximation.

If an RL agent is almost certain of the estimation of the unobservable variables,
½y; P̂ðzÞ	 is well represented by u � ½y; ẑ	, where ẑ denotes the most likely value of z.
Using the estimated environmental state u, i.e., a pair of the observable variable y

and the estimated unobservable variable ẑ, the Bellman’s equation is approximated
as

V ðuÞ ¼ max
a

Qðu; aÞ; ð2aÞ

Qðu; aÞ ¼ rðu; aÞ þ g
X

u0

Pðu0j½y; P̂ðzÞ	; aÞV ðu0Þ: ð2bÞ

The new Bellman’s equation is different from the original one (1), in which
PðzÞ 
 dðz � ẑÞ1 is naively applied, because the state transition incorporates the
estimated distribution of the unobservable variables P̂ðzÞ. Approximation (2) may
not be valid, especially when the RL agent is uncertain of the estimation of the
unobservable variables ẑ. In other words, when the uncertainty of the unobservable
variables is high, the ‘‘best’’ policy based on the approximated Bellman’s equation
(2) may not actually be optimal. Our previous RL method [11] therefore introduced
an additional reward term, called an exploration bonus, which induces exploratory
behaviors for acquiring information from the environment [10].
1dð�Þ is the Dirac’s delta function. dðtÞ ¼ lime!0
1
2e f1ðt þ eÞ � 1ðt � eÞg, where 1ðtÞ is the Heaviside

function.
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In our RL method, the distribution P̂ðzÞ is estimated by a Bayes inference with a
‘‘forgetting’’ effect on past experiences and a non-informative prior. For detailed
formulations, see [11].

2.2. Action selection

Here, we discuss how to select an action depending on the current value function.
We define a stochastic policy p by the conditional probability PpðajuÞ. If the agent

knows the correct optimal value function, including the correct estimation of the
environmental dynamics, the optimal policy is the one that simply selects a ‘‘greedy’’
action to maximize the value function

R
Qðu; aÞPpðajuÞda at each state. In a world

where state and action spaces are finite, the greedy policy will assign probability zero
to possible actions except one or several actions. Since the agent does not know the
correct optimal value function during the process of trial and error, the greedy action
is not necessarily optimal. In addition, when the environment changes, the value
function approximated by using past experiences may not be optimal. To establish
the optimal value function, the agent should execute trial actions, i.e., actions that
are not optimal with respect to the current value function. To preserve such
adaptability of the policy, free energy is introduced

F ðPpÞ ¼

Z
Qðu; aÞPpðajuÞda �

1

b

Z
PpðajuÞ log PpðajuÞda: ð3Þ

Maximizing the first and second terms of this formula corresponds, respectively, to
exploitation (obtaining a large reward based on the current value function) and
exploration (searching for a better policy). Coefficient b is called inverse-
temperature; it controls the balance between exploitation and exploration. This
method of introducing the exploration is an undirected one which explores the state-
action space based on the action randomness, whereas the above-mentioned
exploration bonus is a directed exploration technique that uses the statistics obtained
through the past experiences in order to execute efficient exploration.

Using the variational method, maximization of F ðPpÞ is achieved by

PpðajuÞ ¼
expðbQðu; aÞÞR
expðbQðu; aÞÞda

ð4Þ

which is called the soft-max policy or the Boltzmann policy [27]. When the inverse-
temperature is small, the soft-max policy randomly selects one of the possible
actions. When it is large, in contrast, the policy selects a greedy action that
maximizes the current action-value function.

Since these two strategies, exploitation and exploration, cannot be operated at
once, balancing them has long been an important issue in control field. In a dynamic
environment, especially, they should be balanced depending on the current situation;
for example, exploration should be encouraged when the agent perceives
environmental change. In our previous paper [11], we proposed a two-fold control
method for inverse-temperature based on the current estimation of the environment:
one is based on variation of the action-value function, and the other on detection of
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environmental changes. Although the details are omitted here, what is important is
that the action selection by (4) is modified so as to depend on the current estimation
of the environment.

2.3. Working hypothesis

To deal with a POMDP, our model-based RL method needs the following
functional components:
(1)
 estimation of hidden states;

(2)
 an environmental model describing the whole state space, including hidden

states;

(3)
 prediction of reward accumulation, which depends on the environmental model;

(4)
 optimal action selection, which enlarges reward accumulation.
Reward-related activations of PFC neurons have been shown by various single
neuron recording studies, and this region is known to be crucial for goal-directed
behavior. Since RL-like reward-based learning is considered to be plausible in the
brain incorporating dopaminergic systems, PFC receiving dense dopaminergic
innervations would have an important role in biological RL. Here, we present a
possible brain implementation of our RL method by focusing on the PFC regions:
DLPF, OFC, APF and ACC. Fig. 1 shows our hypothetical RL diagram within
these regions.

The OFC has dense connections with the limbic system involved in emotion and
motivation [17], and plays a crucial role in the motivational control of goal-directed
behaviors [20]. Recent studies have suggested that the OFC is implicated in processes
of desired outcomes, such as reward, including the representation of reward
anticipation [22], the magnitude of received rewards [16] and the acquired
relationship between stimuli and rewards [29]. Although neurons encoding rewards
have been reported in both the OFC and the DLPF, a recent neuro physiological
study that simultaneously recorded neuronal activities in both regions found that the
OFC is more likely to encode the reward alone while the DLPF is more likely to
encode the combination of reward and action [31]. These studies suggest that the
Fig. 1. Hypothesized reinforcement learning diagram within the prefrontal cortex.
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OFC is related to rapid stimulus-reward association learning, and we assume that the
OFC maintains the evaluation of immediate or short-term accumulated rewards to
execute long-term planning.

The DLPF receives sensory inputs processed by other association cortices, and
sends outputs to motor systems such as the striatum and the motor association
cortex. This region has been studied primarily in relation to higher-order cognitive
functions such as attention, working memory and response selection for goal-
directed behaviors. Rao et al. [19] reported sustained activities of DLPF neurons
depending on state and/or action. In addition, recent recording studies have revealed
that DLPF neurons represent the quality and the quantity of future reward [14,32],
and it has been suggested that the DLPF is more likely than the OFC to encode the
combination of reward and action [31]. Thus, we assume that DLPF represents the
long-term estimation of accumulated reward, depending on state and/or action, by
integrating various types of information such as reward prediction from the OFC,
the history of state observation, and the animal’s own action. This function can be
regarded as the value function and/or the action-value function in RL.

In model-based RL, the value function is approximated using the environmental
model. According to a recent view, based on findings that the DLPF seems to guide
behaviors in accordance with environmental requirements, the DLPF constructs
automata, cascade networks in which each nodal point generates an action using
currently available or memorized information to achieve a behavioral goal [28]. A
recent study [18] suggested that the DLPF is involved in preparation for forthcoming
sequences of actions based on information stored in working memory. Such
behavioral planning requires prediction of environmental changes induced by the
animal’s own action. We speculate that the environmental models in RL, which
predict the next state, are expressed in the DLPF.

The environmental model of our RL method requires estimation of unobservable
variables. In a branching task [13], the APF was activated when a subject could not
predict whether the forthcoming task would be a primary task or a subtask. An
imaging study of an explicit categorization task [25] suggested that a rule change
evoked an activation in the APF. From these results, it was proposed that the APF is
involved in active switching of behavioral rules without explicit cues. Since such
switching reflects the selection of an appropriate subprocess based on unobservable
contextual information, we consider that the APF may be related to estimation of
unobservable states using past experiences.

In our RL, action selection is based on both the current value function and the
detection of environmental change. A primate recording study [24] and a human
imaging study [4] revealed that ACC activations are related to voluntary switching of
behavioral rules, which is dependent on reward expectation. The ACC is also
activated by detection of behavioral error [3] and conflict among incompatible
responses [2,5]. We consider that the ACC is associated with the uncertainty of
action selection based on the current environmental model maintained in the DLPF.
Actually, there are thick innervations from the DLPF to the ACC.

In our hypothetical diagram in Fig. 1, the DLPF maintains and manipulates the
environmental model and the reward-based environmental model, i.e., Pðu0j½y; P̂ðzÞ	; aÞ
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and Qðu; aÞ in (2). The APF estimates unobservable state variables, ẑ and P̂ðzÞ. These
estimations are carried to the ACC, which executes action selection (4).
3. fMRI experiment

3.1. Material and methods

3.1.1. Behavioral task

Sixteen subjects (13 males and 3 females) participated in experiments after giving
written informed consent which was reviewed and approved by the ethical committee
of Advanced Telecommunications Research Institute International, Japan. All were
graduate students in scientific or engineering fields. None of the subjects reported
any history of neurological or psychiatric disorders, and all had correct-for-normal
vision. Subjects performed sequential learning tasks, and were given a fixed basic
monetary payment plus a monetary bonus in proportion to their task scores.

In a sequential learning task, at the start of each trial (Fig. 2(a)), a fixation cross
was displayed at the screen center. The cross was surrounded by four squares, and a
green trial bar indicating the number of remaining trials was displayed above them.
The color of each square was red or gray, and a single task completion was a
sequence of eight states, each of which was represented by a color pattern of the four
squares. In the initial state of this sequence, all squares were gray; the color of the
squares then changed, clockwise, from gray to red in the first round and from red to
gray in the second (Fig. 2(b)). For each state, one of a pair of left and right buttons
was set as the correct response button and the other was set as the wrong one. In the
trial, subjects were required to press either button under their dominant hand within
2 s, but were instructed to respond as quickly and accurately as possible.
Immediately after a response, the green trial bar was shortened and the fixation
cross disappeared. After that, when the predetermined correct button was pressed,
the color of one square changed indicating a successful transition to the next state. If
the subject pressed the wrong button, or did not press a button within 2 s, there was
no state change, and the same color pattern was displayed as in the previous trial so
that the subject was required to try the same state again. Regardless of the response
time, the time interval for the state change was 3 s, during which the current color
pattern was displayed. The state transition is thus represented by an eight-length
automaton, in which the goal state is identical with the initial one. To reach the goal,
therefore, subjects had to learn a sequence of eight correct responses, based on
feedback indicating whether each response was correct or not.

An experiment consisted of two task conditions, a memory (MEM) condition and
an MDP condition, which have different state transition characteristics. In both
conditions, since the correct response sequence was not instructed in advance,
subjects had to acquire it by trial and error. In the MEM condition with a
deterministic state transition, on the one hand, subjects needed simply to memorize
the correct response at each state until the first goal was achieved, and thereafter to
repeat the memorized sequence of eight responses. In the MDP condition, on the
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Fig. 2. A sequential learning task using visual stimuli and two response buttons. (a) At the onset of each

trial (3 s), four squares surrounding a fixation cross and a trial bar were displayed on the screen. There

were eight color patterns of the squares, each of which represented an individual state. A subject was

required to press one of the left and right buttons within 2 s, and the response immediately induced the

disappearance of the fixation cross and the decrease of the trial bar length. Subsequently, the next stimulus

and a fixation cross were presented indicating the next trial. The next stimulus was determined by each

response; if the response was correct, the color was changed indicating the next state, while the wrong

response caused no state change. (b) A single task completion was a sequence of eight states in which both

of the initial and the goal state were represented by four gray squares and the color change of one square

indicated a single state transition. The color changed clockwise from gray to red in the first round and

from red to gray in the second. (c) An experiment run consisted of one MEM block and three MDP

blocks. At the onset of each task block, the visual messages of condition name and block number were

displayed. At the end of the MEM block or the third MDP block, the task performance was visually

noticed.
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other hand, the state transition was first-order Markov, in which a correct response
resulted in state transition (success) with 85% or same-state repetition (failure) with
15%; these state transition probabilities did not change. Then, after subjects are
certain of the state transition, their action selection becomes almost automatic as in
the MEM condition.

Subjects performed two successive 6min sessions, each of which comprised three
MDP blocks of 20 trials and one MEM block of 20 trials (Fig.2(c)). Each behavioral
task block was followed by a control condition without the need for either memory
or learning. In the control condition, which used the same visual stimuli and buttons
as the task conditions, only the left or the right square was turned to red in each trial,
and subjects were required to press the corresponding button as a straightforward
reaction.

Although the MDP condition was divided into three blocks, the correct response
sequence and its probabilities were the same for all three. Thus, subjects needed to
retain the learned sequence during the intervening control tasks. Subjects were
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instructed the condition name by a visual message at the onset of each condition.
After each block, the number of bonus points attained, corresponding to the number
of achieved goals, was displayed. This indicated the monetary reward added to the
basic reward. Even if a subject could not achieve a single goal, indicating zero bonus
points, the basic monetary reward was paid. Before entering the scanner, subjects
were given details of the task, and performed two training sessions in which the
successful state transition probability was set higher than in the scanning MDP
condition.

3.1.2. Procedures and analysis

Using a whole-brain 1.5-tesla scanner (Magnetic Eclipse; Shimadzu Marconi,
Kyoto, Japan), functional images were obtained with T2*-weighted echo-planar
images (EPIs), with blood oxygenation level-dependent (BOLD) contrast (TE, 55ms;
FA, 90 1). Volumes were acquired every 3 s (TR), and contained 28 slices of 5-mm
thickness (matrix size, 64 � 64; FOV, 192 � 192mm2). Stimulus presentation and
scanning were synchronized at the beginning of each run. The first six (15 s) EPIs in
each session were discarded to avoid T1 equilibrium effects. Each scanning run
began with a high-resolution T1-weighted three-dimensional volume acquisition for
anatomical localization (voxel size, 1 � 1 � 1mm3).

The imaging data were analyzed with Statistical Parametric Mapping (SPM99,
Wellcome Department of Cognitive Neurology, London, UK), implemented within
Matlab 6.5 (Mathworks Inc.). All functional images from each subject were
realigned with the first image, and then registered to the individual anatomical
image. After that, the co-registered T1 image was normalized into the MNI
(Montreal Neurological Institute) template, involving three-dimensional transfor-
mations. The parameters from this normalization process were then applied to
normalization of each EPI image. The EPI images were reformatted to isometric
voxels (2 � 2 � 2mm3). The normalized EPIs were spatially smoothed with a
Gaussian kernel of 10mm (FWHM) in the x, y, and z-axes.

Statistical parametric maps of t-statistics were calculated for condition-specific
effects within a general linear model. For each MEM or MDP block, sustained
activity was modeled as an epoch convolved with a canonical hemodynamic response
function. The data were high-pass filtered using low-frequency cosine functions with
a cut-off of 168 s. In order to account for inter-subject variability, and to allow
statistical inference at the population level, one sample t-test for statistical
significance of the group random effect, where the threshold at the voxel level was
set to po0:001 uncorrected and that at the cluster level to po0:05 corrected, was
subsequently applied.

3.2. Results and discussion

3.2.1. Behavioral results

To investigate task performance, we conducted one-way ANOVA using all
behavioral data of 32 sessions for 16 subjects. Each subject was required to make
prompt and accurate responses in the experiments, and response time (RT), the time
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Fig. 3. Mean reaction time (RT) and its standard deviation in each task session. RTs in the MDP

condition significantly decreased as the learning blocks proceeded.
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interval between the presentation of a stimulus and the initiation of a response was
examined. Fig. 3 shows the mean RTs (370.1ms in the MEM block; 415.2ms,
392.7ms and 336.1ms in the three MDP blocks) and the corresponding standard
deviations. Although the RTs were not significantly different between the MEM and
MDP conditions, they significantly decreased as the MDP blocks proceeded
(F ½2; 93	 ¼ 3:46; po0:05). All responses in the task conditions can be classified into
successful or failed actions, and the error rate (the rate of failed actions) decreased
significantly as the three MDP blocks proceeded (F ½2; 93	 ¼ 27:41; po0:001). These
results indicate that the subjects became able to determine their own responses
quickly and accurately as the learning proceeded.

We also measured the moving average (window size2: 11) both of behavioral
correctness by means of overlap with the correct response sequence, and of
behavioral variation by means of entropy3; both were averaged over all subjects.
Figs. 4(a) and (b) show the results for the MEM block and the three MDP blocks,
respectively, where the abscissa denotes the number of trials but note that the scale is
different in the two figures. The solid and dashed lines correspond to the overlap
(right ordinate) and entropy (left ordinate), respectively. Since the entropy
decreased, while the overlap increased, with time in both Figs. 4(a) and (b), the
behavioral variation decreased as the learning of the correct response sequence
proceeded in both conditions. In the MEM condition, subjects almost completely
learned the state transition by the end of one block, while the learning in the MDP
condition had not been completed at the end of the first MDP block indicated by the
2Window size was determined as the average number of trials required to reach the goal state from the

initial state.
3Behavioral entropy was calculated by H ¼ �

P
p log p, with p being the probability of each action at

each state within the sliding window. When only one action occurs at a state, the entropy for the state

becomes the minimum value 0.



ARTICLE IN PRESS

(a) (b)

Fig. 4. The moving average of overlap and behavioral entropy in the MEM (a) and MDP (b) conditions.

In both conditions, the overlap (solid line) increased and the entropy (dashed line) decreased as learning

proceeded. The vertical line in (b) denotes the end of the first session which is equivalent of the maximum

trial number in (a).
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vertical line. Indeed, in most MDP sessions ð26
32
Þ, exploratory behaviors continued

even in the third block. These results suggest that learning of the environmental
model (state transition sequence) was continuously conducted throughout the three
MDP blocks. In the MEM condition, in contrast, once a subject achieved the goal,
his/her behaviors did not fluctuate since there was no longer any need to renew the
environmental model.
3.2.2. Imaging results

Comparison of the MDP and MEM conditions revealed significant increases in
activations, mainly in four regions: the posterior and anterior DLPF, inferior
parietal cortex (PCi) and ACC. Figs. 5(a) and (b) show the Z-value map of random-
effect analysis for the 16 subjects, rendered onto a three-dimensional template, and a
normalized structural MRI image for anatomical visualization, respectively. Table 1
summarizes the statistics of peak voxels in the activated clusters. To investigate
activation changes associated with learning progression, we examined the average
activation in these four regions in the MEM and MDP blocks. In Fig. 6, the left
panel in each subfigure shows the activated region in an anatomical image, and the
right bar graph indicates the mean percent signal changes of the peak voxel in the
corresponding region.

Although correct action sequences (automata) in both of the MEM and MDP
conditions have a length of eight, subjects in the MDP condition were required to
retain some possible sequences (environmental models), especially at the early
learning stage, due to the stochastic nature of the task. We consider that the
significant activation increase in the PFC observed during the MDP blocks is related
to the manipulation and maintenance of the automata representing possible
environmental models.
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Fig. 5. Significant activation during the MDP condition compared to the MEM condition with a group

random-effect model (corrected to po0:05).

Table 1

Statistics of significantly activated regions during the MDP task

Brain region Z-value Talairach

Region Side BA x y z

Prefrontal cortex

Middle frontal gyrus R 8 4.35 34 25 41

Middle frontal gyrus R 46/9 3.57 48 32 21

Parietal cortex

Inferior parietal gyrus R 40/7 5.34 42 �46 43

Inferior parietal gyrus L 40/7 5.14 �48 �40 44

Anterior cingulate cortex

Cingulate gyrus R 32 4.15 6 22 38

Cingulate gyrus L 32 3.96 �2 24 44
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A recent event-related fMRI study [21] revealed that both the posterior DLPF
(BA 8) and the PCi (BA 40

7
) showed sustained activities when a subject maintained

spatial information during a delay period, while no activation was associated with
the selection of responses from stored information. Because these regions are related
to the maintenance of working memory, and not to executive processing, we suggest



ARTICLE IN PRESS

(a) (b)

(c) (d)

Fig. 6. Major activated brain regions during the MDP condition (left panels) and their signal changes (%)

in the MEM and three MDP blocks (right panels, bar graphs). (a) Posterior dorsolateral prefrontal, (b)

anterior dorsolateral prefrontal, (c) inferior parietal cortex, and (d) anterior cingulate cortex.
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that the activations observed in the posterior DLPF and PCi are involved in the
maintenance of environmental models. In our learning tasks, the environmental
model must be maintained in working memory even if the correct sequence has
already been obtained, and both regions actually showed constant activation
(F ½2; 93	 ¼ 1:12; p ¼ 0:334) from the first to the last MDP blocks (Fig. 6(a,c)).

A significant activation increase in the anterior DLPF (BA 46
9
) was accompanied

by the reproduction of sequentially represented stimuli after a memory delay [18] and
the processing of sequence memories [6]. Thus, this region is thought to be involved
in the manipulation of sequential information stored in working memory. In the
MDP blocks, subjects were required to retain multiple candidates of a response
sequence and to manipulate them until the correct sequence was acquired. The
anterior DLPF may play a role in temporal processing such as mental simulation of
environmental models or updating of stored sequential information. When subjects
repeated a learned sequence in the last MDP block, this region showed a significant
decrease (F ½1; 62	 ¼ 8:80; po0:005) in activation, while no such decrease occurred in
the posterior DLPF (Fig. 6(b)). This finding supports our interpretation that the
posterior and anterior DLPF respectively maintains and manipulates environmental
models.

We also found a significant activation increase in the ACC during the MDP
condition, and this activation decreased significantly (F ½2; 93	 ¼ 10:53; po0:0001) as
4The difference is not significant.
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the MDP blocks proceeded (Fig. 6(d)). The decrease in behavioral variation during
learning could be related to the decrease in the activity of the ACC. This
interpretation is consistent with our hypothesis, in which the ACC is responsible for
the control of action selection based on competition among possible actions using
current evaluation of the environment.

In summary, this imaging study suggests that the posterior DLPF maintains, and
the anterior DLPF manipulates, possible environmental models, while the ACC
represents the uncertainty of the action selection.
4. Concluding remarks

In this study, we have presented a model-based RL method in which the
environment is directly estimated. To adapt to changes in the environment, a control
method of action selection was introduced.

We proposed a possible functional model of our RL method, in which the DLPF
maintains and manipulates the environmental models and the ACC is related to
action selection, and conducted an fMRI experiment. The experimental results were
consistent with our hypothesis. Although we also suggest that the estimation of
unobservable states in RL is expressed in the APF, this possibility has not yet been
examined, and is an issue for future study.
References

[1] A.G. Barto, Adaptive critics and the basal ganglia, in: J.C. Houk, J.L. Davis, D.G. Beiser (Eds.),

Models of Information Processing in the Basal Ganglia, MIT Press, Cambridge, MA, 1995,

pp. 215–232.

[2] M. Botvinick, L.E. Nystrom, K. Fissell, C.S. Carter, J.D. Cohen, Conflict monitoring versus

selection-for-action in anterior cingulate cortex, Nature 402 (1999) 179–181.

[3] T.S. Braver, D.M. Barch, J.R. Gray, D.J. Molfese, A. Snyder, Anterior cingulate cortex and response

conflict: effects of frequency inhibition and errors, Cereb. Cortex 11 (2001) 825–836.

[4] G. Bush, B.A. Vogt, J. Holmes, A.M. Dale, D. Greve, M.A. Jenike, B.R. Rosen, Dorsal anterior

cingulate cortex: a role in reward-based decision making, Proc. Natl. Acad. Sci. USA 99 (2002)

507–512.

[5] C.S. Carter, T.S. Braver, D.M. Barch, M.M. Botvinick, D. Noll, J.D. Cohen, Anterior cingulate

cortex, error detection, and the online monitoring of performance, Science 280 (1998) 747–749.

[6] J.D. Cohen, W.M. Perlstein, T.S. Braver, L.E. Nystrom, D.C. Noll, J. Jonides, E.E. Smith, Temporal

dynamics of brain activation during a working memory task, Nature 386 (1997) 604–608.

[7] P. Dayan, T.J. Sejnowski, Exploration bonuses and dual control, Mach. Learn. 25 (1996) 5–22.

[8] R. Dearden, N. Friedman, D. Andre, Model based Bayesian exploration, in: Proceedings of the 15th

Conference on Uncertainty in Artificial Intelligence, Morgan Kaufman, San Francisco, CA, 1999,

pp. 150–159.

[9] K. Doya, Reinforcement learning in continuous time and space, Neural Comput. 12 (2000) 219–245.

[10] R.A. Howard, Information value theory, IEEE Trans. Syst. Sci. Cybernet. SSC-2 (1) (1996) 22–26.

[11] S. Ishii, W. Yoshida, J. Yoshimoto, Control of exploitation-exploration meta-parameter in

reinforcement learning, Neural Networks 15 (2002) 665–687.

[12] L.P. Kaelbling, M.L. Littman, A.R. Cassandra, Planning and acting in partially observable stochastic

domains, Artif. Intell. 101 (1998) 99–134.



ARTICLE IN PRESS

W. Yoshida, S. Ishii / Neurocomputing 63 (2005) 253–269268
[13] E. Koechlin, G. Corrado, P. Pietrini, J. Grafman, Dissociating the role of the medial and lateral

anterior prefrontal cortex in human planning, Proc. Natl. Acad. Sci. USA 97 (2000) 7651–7656.

[14] M.I. Leon, M.N. Shadlen, Effect of expected reward magnitude on the response of neurons in the

dorsolateral prefrontal cortex of the macaque, Neuron 24 (1999) 415–425.

[15] A.W. Moore, C.G. Atkeson, Prioritized sweeping: reinforcement learning with less data and less real

time, Mach. Learn. 13 (1993) 103–130.

[16] J. O’Doherty, M.L. Kringelbach, E.T. Rolls, J. Hornak, C. Andrews, Abstract reward and

punishment representations in the human orbitofrontal cortex, Nat. Neurosci. 4 (2001) 95–102.

[17] M. Petrides, D.N. Pandya, Comparative architectonic analysis of the human and macaque frontal

cortex, in: J. Graftman, F. Boller (Eds.), Handbook of Neuropsychology, Elsevier, Amsterdam, 1995.

[18] J.B. Pochon, R. Levy, J.B. Poline, S. Crozier, S. Lehericy, B. Pillon, B. Deweer, D. Le Bihan, B.

Dubois, The role of dorsolateral prefrontal cortex in the preparation of forthcoming actions: an

fMRI study, Cereb. Cortex 11 (2001) 260–266.

[19] S.C. Rao, G. Rainer, E.K. Miller, Integration of what and where in the primate prefrontal cortex,

Science 276 (1997) 821–824.

[20] E.T. Rolls, The orbitofrontal cortex, Philos. Trans. Roy. Soc. London. Series B: Biol. Sci. 351 (1996)

1433–1443.

[21] J.B. Rowe, I. Toni, O. Josephs, R.S.J. Frackowiak, R.E. Passingham, The prefrontal cortex: response

selection or maintenance within working memory?, Science 288 (2000) 1656–1660.

[22] G. Schoenbaum, A.A. Chiba, M. Gallagher, Orbitofrontal cortex and basolateral amygdala encode

expected outcomes during learning, Nat. Neurosci. 1 (1998) 155–159.

[23] W. Schultz, P. Dayan, R.P. Montague, A neural substrate of prediction and reward, Science 275

(1997) 1593–1599.

[24] K. Shima, J. Tanji, Role for cingulate motor area cells in voluntary movement selection based on

reward, Science 282 (1998) 1335–1338.

[25] B.A. Strange, R.N.A. Henson, K.J. Friston, R.J. Dolan, Anterior prefrontal cortex mediates rule

learning in humans, Cereb. Cortex 11 (2001) 1040–1046.

[26] R.S. Sutton, Integrated architectures for learning, planning, and reacting based on approximating

dynamic programming, in: Proceeding of the Seventh International Conference on Machine

Learning, Morgan Kaufmann, Los Altos, CA, 1990, pp. 216–224.

[27] R.S. Sutton, A.G. Barto, Reinforcement Learning: An Introduction, MIT Press, Cambridge, 1998.

[28] J. Tanji, E. Hoshi, Behavioral planning in the prefrontal cortex, Curr. Opin. Neurobiol. 11 (2001)

164–170.

[29] L. Tremblay, W. Schultz, Relative reward preference in primate orbitofrontal cortex, Nature 398

(1999) 704–708.

[30] P. Waelti, A. Dickinson, W. Schultz, Dopamine responses comply with basic assumptions of formal

learning theory, Nature 412 (2001) 43–48.

[31] J.D. Wallis, E.K. Miller, Neuronal activity in primate dorsolateral and orbital prefrontal cortex

during performance of a reward preference task, Euro. J. Neurosci. 18 (2003) 2069–2081.

[32] M. Watanabe, Reward expectancy in primate prefrontal neurons, Nature 382 (1996) 629–632.
Wako Yoshida is a researcher with Graduate School of Information Science at

Nara Institute of Science and Technology. She received her B.A. in 1998 from

Kobe College, M.E. in 2000 and Ph.D. in 2003 both from Nara Institute of

Science and Technology. Her research interest includes theoretical and

experimental approach to human’s higher order functions such as learning,

memory and communication.



ARTICLE IN PRESS

W. Yoshida, S. Ishii / Neurocomputing 63 (2005) 253–269 269
Shin Ishii received his B.E. in 1986, M.E. in 1988, and Ph.D. in 1987 from

University of Tokyo. He is a professor of Graduate School of Information

Science at Nara Institute of Science and Technology. His current research

interests are computational neuroscience, systems neurobiology and statistical

learning theory.


	Model-based reinforcement learning: a computational model and an fMRI study
	Introduction
	Model-based RL method
	Partially-observable MDP
	Action selection
	Working hypothesis

	fMRI experiment
	Material and methods
	Behavioral task
	Procedures and analysis

	Results and discussion
	Behavioral results
	Imaging results


	Concluding remarks
	References


