様々な計算モデルを実験で検証することや、理論にもとづく実験を行う事が出来ました。当時電総研におられた河野憲二先生の研究グループと共同で小脳内部モデル仮説を検証することが出来たのはとても幸運でした[7,8]。五味裕章さん、大須理英子さんやEtienne Burdetさんらとはロボットマニピュランダム[9,10]、今水寛さん等とはfMRI[11]を用いた実験にも手を付けるようになり、強化学習モデルに基づくfMRI実験については、私と銅谷賢治さん、春野雅彦さんが、世界で初めてcomputational model based neuroimagingと言う用語を使いました [12,13]。
参考文献 [1] Kawato, M., Furukawa, K., Suzuki, R. (1987): A hierarchical neural-network model for control and learning of voluntary movement, Biological Cybernetics, Vol.57, pp.169-185.
[2] Kawato, M., Gomi, H. (1992): A computational model of four regions of the cerebellum based on feedback-error-learning, Biological Cybernetics, Vol.68, pp.95-103.
[3] Kawato, M., Hayakawa, H., Inui, T. (1993): A forward-inverse optics model of reciprocal connections between visual cortical areas, Network:Computation in Neural systems, Vol.4, pp.415-422.
[4] Wolpert, D., Kawato, M. (1998): Multiple paired forward and inverse models for motor control, Neural Networks, Vol.11, pp.1317-1329.
[5] Atkeson, CG., Hale, J., Pollick, F., Riley, M., Kotosaka, S., Schaal, S., Shibata, T., Tevatia, G., Vijayakumar, S., Ude, A., Kawato, M. (2000): Using humanoid robots to study human behavior, IEEE Intelligent Systems: Special Issue on Humanoid Robotics, Vol.15, pp.46-56.
[6] Morimoto, J., Kawato, M. (2015): Creating the brain and interacting with the brain: an integrated approach to understanding the brain, Journal of the Royal Society Interface, Vol.12, 20141250.
[7] Shidara, M., Kawano, K., Gomi, H., Kawato, M. (1993): Inverse-dynamics model eye movement control by purkinje cells in the cerebellum, Nature, Vol.365, pp.50-52.
[8] Kawato, M. (1999): Internal models for motor control and trajectory planning, Current Opinion in Neurobiology, Vol.9, pp.718-727.
[9] Gomi, H., Kawato, M. (1996): Equilibrium-point control hypothesis examined by measured arm-stiffness during multijoint movement, Science, Vol.272, pp.117-120.
[10] Burdet, E., Osu, R., Franklin, D., Milner, T., Kawato, M. (2001): The central nervous system stabilizes unstable dynamics by learning optimal impedance, Nature, Vol.414, pp.446-449.
[11] Imamizu, H., Miyauchi, S., Tamada, T., Sasaki, Y., Takino, R., Puetz, B., Yoshioka, T., Kawato, M. (2000): Human cerebellar activity reflecting an acquired internal model of a new tool, Nature, Vol.403, pp.192-195.
[12] Haruno, M., Kuroda, T., Doya, K., Toyama, K., Kimura, M., Samejima, K., Imamizu, H., Kawato, M. (2004): A neural correlate of reward-based behavioral learning in caudate nucleus: a functional magnetic resonance imaging study of a stochastic decision task, Journal of Neuroscience, Vol.24, pp.1660-1665.
[13] Haruno, M., Kawato, M. (2006): Different neural correlates of reward expectation and reward expectation error in the putamen and caudate nucleus during stimulus-action-reward association learning, Journal of Neurophysiology, Vol.95, pp.948-959.
[14] Yahata, N., Morimoto, J., Hashimoto, R., Lisi, G., Shibata, K., Kawakubo, Y., Kuwabara, H., Kuroda, M., Yamada, T., Megumi, F., Imamizu, H., Nanez, JE., Takahashi, H., Okamoto, Y., Kasai, K., Kato, N., Sasaki, Y., Watanabe, T., Kawato, M. (2016): A small number of abnormal brain connections predicts adult autism spectrum disorder, Nature Communications, Vol.7, p.11254.
[15] Shibata, K., Watanabe, T., Sasaki, Y., Kawato, M. (2011): Perceptual learning incepted by decoded fMRI neurofeedback without stimulus presentation, Science, Vol.334, No.6061, pp.1413-1415
[16] Megumi, F., Yamashita, A., Kawato, M., Imamizu, H. (2015): Functional MRI neurofeedback training on connectivity between two regions induces long-lasting changes in intrinsic functional network, Frontiers in Human Neuroscience, Vol.9, p.160.
[17] Watanabe, T., Sasaki, Y., Shibata, K., Kawato, M. (2017): Advances in fMRI real-time neurofeedback, Trends in Cognitive Sciences, Vol.21, pp.997-1010